| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapellkr.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapellkr.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | hdmapellkr.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hdmapellkr.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hdmapellkr.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmapellkr.z |  |-  .0. = ( 0g ` R ) | 
						
							| 7 |  | hdmapellkr.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmapellkr.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmapellkr.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | hdmapellkr.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 12 |  | eqid |  |-  ( LKer ` U ) = ( LKer ` U ) | 
						
							| 13 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 15 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 16 | 1 3 4 14 15 7 8 9 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 17 | 1 14 15 3 11 8 16 | lcdvbaselfl |  |-  ( ph -> ( S ` X ) e. ( LFnl ` U ) ) | 
						
							| 18 | 4 5 6 11 12 13 17 10 | ellkr2 |  |-  ( ph -> ( Y e. ( ( LKer ` U ) ` ( S ` X ) ) <-> ( ( S ` X ) ` Y ) = .0. ) ) | 
						
							| 19 | 1 2 3 4 11 12 7 8 9 | hdmaplkr |  |-  ( ph -> ( ( LKer ` U ) ` ( S ` X ) ) = ( O ` { X } ) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( ph -> ( Y e. ( ( LKer ` U ) ` ( S ` X ) ) <-> Y e. ( O ` { X } ) ) ) | 
						
							| 21 | 18 20 | bitr3d |  |-  ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> Y e. ( O ` { X } ) ) ) |