| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapip1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapip1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapip1.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmapip1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 6 |  | hdmapip1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmapip1.i |  |-  .1. = ( 1r ` R ) | 
						
							| 8 |  | hdmapip1.n |  |-  N = ( invr ` R ) | 
						
							| 9 |  | hdmapip1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hdmapip1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | hdmapip1.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 12 |  | hdmapip1.y |  |-  Y = ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) | 
						
							| 13 | 12 | fveq2i |  |-  ( ( S ` X ) ` Y ) = ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 15 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 16 | 11 | eldifad |  |-  ( ph -> X e. V ) | 
						
							| 17 | 1 2 10 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 18 | 6 | lvecdrng |  |-  ( U e. LVec -> R e. DivRing ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> R e. DivRing ) | 
						
							| 20 | 1 2 3 6 14 9 10 16 16 | hdmapipcl |  |-  ( ph -> ( ( S ` X ) ` X ) e. ( Base ` R ) ) | 
						
							| 21 |  | eldifsni |  |-  ( X e. ( V \ { .0. } ) -> X =/= .0. ) | 
						
							| 22 | 11 21 | syl |  |-  ( ph -> X =/= .0. ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 24 | 1 2 3 5 6 23 9 10 16 | hdmapip0 |  |-  ( ph -> ( ( ( S ` X ) ` X ) = ( 0g ` R ) <-> X = .0. ) ) | 
						
							| 25 | 24 | necon3bid |  |-  ( ph -> ( ( ( S ` X ) ` X ) =/= ( 0g ` R ) <-> X =/= .0. ) ) | 
						
							| 26 | 22 25 | mpbird |  |-  ( ph -> ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) | 
						
							| 27 | 14 23 8 | drnginvrcl |  |-  ( ( R e. DivRing /\ ( ( S ` X ) ` X ) e. ( Base ` R ) /\ ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) -> ( N ` ( ( S ` X ) ` X ) ) e. ( Base ` R ) ) | 
						
							| 28 | 19 20 26 27 | syl3anc |  |-  ( ph -> ( N ` ( ( S ` X ) ` X ) ) e. ( Base ` R ) ) | 
						
							| 29 | 1 2 3 4 6 14 15 9 10 16 16 28 | hdmaplnm1 |  |-  ( ph -> ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) = ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) ) | 
						
							| 30 | 14 23 15 7 8 | drnginvrl |  |-  ( ( R e. DivRing /\ ( ( S ` X ) ` X ) e. ( Base ` R ) /\ ( ( S ` X ) ` X ) =/= ( 0g ` R ) ) -> ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) = .1. ) | 
						
							| 31 | 19 20 26 30 | syl3anc |  |-  ( ph -> ( ( N ` ( ( S ` X ) ` X ) ) ( .r ` R ) ( ( S ` X ) ` X ) ) = .1. ) | 
						
							| 32 | 29 31 | eqtrd |  |-  ( ph -> ( ( S ` X ) ` ( ( N ` ( ( S ` X ) ` X ) ) .x. X ) ) = .1. ) | 
						
							| 33 | 13 32 | eqtrid |  |-  ( ph -> ( ( S ` X ) ` Y ) = .1. ) |