Metamath Proof Explorer


Theorem hdmapipcl

Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapipcl.h
|- H = ( LHyp ` K )
hdmapipcl.u
|- U = ( ( DVecH ` K ) ` W )
hdmapipcl.v
|- V = ( Base ` U )
hdmapipcl.r
|- R = ( Scalar ` U )
hdmapipcl.b
|- B = ( Base ` R )
hdmapipcl.s
|- S = ( ( HDMap ` K ) ` W )
hdmapipcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapipcl.x
|- ( ph -> X e. V )
hdmapipcl.y
|- ( ph -> Y e. V )
Assertion hdmapipcl
|- ( ph -> ( ( S ` Y ) ` X ) e. B )

Proof

Step Hyp Ref Expression
1 hdmapipcl.h
 |-  H = ( LHyp ` K )
2 hdmapipcl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapipcl.v
 |-  V = ( Base ` U )
4 hdmapipcl.r
 |-  R = ( Scalar ` U )
5 hdmapipcl.b
 |-  B = ( Base ` R )
6 hdmapipcl.s
 |-  S = ( ( HDMap ` K ) ` W )
7 hdmapipcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 hdmapipcl.x
 |-  ( ph -> X e. V )
9 hdmapipcl.y
 |-  ( ph -> Y e. V )
10 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
11 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
12 1 2 3 10 11 6 7 9 hdmapcl
 |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
13 1 2 3 4 5 10 11 7 12 8 lcdvbasecl
 |-  ( ph -> ( ( S ` Y ) ` X ) e. B )