Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hdmapipcl.h | |- H = ( LHyp ` K ) | |
| hdmapipcl.u | |- U = ( ( DVecH ` K ) ` W ) | ||
| hdmapipcl.v | |- V = ( Base ` U ) | ||
| hdmapipcl.r | |- R = ( Scalar ` U ) | ||
| hdmapipcl.b | |- B = ( Base ` R ) | ||
| hdmapipcl.s | |- S = ( ( HDMap ` K ) ` W ) | ||
| hdmapipcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| hdmapipcl.x | |- ( ph -> X e. V ) | ||
| hdmapipcl.y | |- ( ph -> Y e. V ) | ||
| Assertion | hdmapipcl | |- ( ph -> ( ( S ` Y ) ` X ) e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hdmapipcl.h | |- H = ( LHyp ` K ) | |
| 2 | hdmapipcl.u | |- U = ( ( DVecH ` K ) ` W ) | |
| 3 | hdmapipcl.v | |- V = ( Base ` U ) | |
| 4 | hdmapipcl.r | |- R = ( Scalar ` U ) | |
| 5 | hdmapipcl.b | |- B = ( Base ` R ) | |
| 6 | hdmapipcl.s | |- S = ( ( HDMap ` K ) ` W ) | |
| 7 | hdmapipcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 8 | hdmapipcl.x | |- ( ph -> X e. V ) | |
| 9 | hdmapipcl.y | |- ( ph -> Y e. V ) | |
| 10 | eqid | |- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | |
| 11 | eqid | |- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | |
| 12 | 1 2 3 10 11 6 7 9 | hdmapcl | |- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
| 13 | 1 2 3 4 5 10 11 7 12 8 | lcdvbasecl | |- ( ph -> ( ( S ` Y ) ` X ) e. B ) |