Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapipcl.h | |- H = ( LHyp ` K ) |
|
hdmapipcl.u | |- U = ( ( DVecH ` K ) ` W ) |
||
hdmapipcl.v | |- V = ( Base ` U ) |
||
hdmapipcl.r | |- R = ( Scalar ` U ) |
||
hdmapipcl.b | |- B = ( Base ` R ) |
||
hdmapipcl.s | |- S = ( ( HDMap ` K ) ` W ) |
||
hdmapipcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
hdmapipcl.x | |- ( ph -> X e. V ) |
||
hdmapipcl.y | |- ( ph -> Y e. V ) |
||
Assertion | hdmapipcl | |- ( ph -> ( ( S ` Y ) ` X ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapipcl.h | |- H = ( LHyp ` K ) |
|
2 | hdmapipcl.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | hdmapipcl.v | |- V = ( Base ` U ) |
|
4 | hdmapipcl.r | |- R = ( Scalar ` U ) |
|
5 | hdmapipcl.b | |- B = ( Base ` R ) |
|
6 | hdmapipcl.s | |- S = ( ( HDMap ` K ) ` W ) |
|
7 | hdmapipcl.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
8 | hdmapipcl.x | |- ( ph -> X e. V ) |
|
9 | hdmapipcl.y | |- ( ph -> Y e. V ) |
|
10 | eqid | |- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
|
11 | eqid | |- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
|
12 | 1 2 3 10 11 6 7 9 | hdmapcl | |- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
13 | 1 2 3 4 5 10 11 7 12 8 | lcdvbasecl | |- ( ph -> ( ( S ` Y ) ` X ) e. B ) |