| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapln1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapln1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapln1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapln1.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmapln1.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmapln1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmapln1.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmapln1.q |  |-  .+^ = ( +g ` R ) | 
						
							| 9 |  | hdmapln1.m |  |-  .X. = ( .r ` R ) | 
						
							| 10 |  | hdmapln1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapln1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmapln1.x |  |-  ( ph -> X e. V ) | 
						
							| 13 |  | hdmapln1.y |  |-  ( ph -> Y e. V ) | 
						
							| 14 |  | hdmapln1.z |  |-  ( ph -> Z e. V ) | 
						
							| 15 |  | hdmapln1.a |  |-  ( ph -> A e. B ) | 
						
							| 16 | 1 2 11 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 17 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 18 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 19 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 20 | 1 2 3 17 18 10 11 14 | hdmapcl |  |-  ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 21 | 1 17 18 2 19 11 20 | lcdvbaselfl |  |-  ( ph -> ( S ` Z ) e. ( LFnl ` U ) ) | 
						
							| 22 | 3 4 6 5 7 8 9 19 | lfli |  |-  ( ( U e. LMod /\ ( S ` Z ) e. ( LFnl ` U ) /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( S ` Z ) ` ( ( A .x. X ) .+ Y ) ) = ( ( A .X. ( ( S ` Z ) ` X ) ) .+^ ( ( S ` Z ) ` Y ) ) ) | 
						
							| 23 | 16 21 15 12 13 22 | syl113anc |  |-  ( ph -> ( ( S ` Z ) ` ( ( A .x. X ) .+ Y ) ) = ( ( A .X. ( ( S ` Z ) ` X ) ) .+^ ( ( S ` Z ) ` Y ) ) ) |