Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapln1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapln1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapln1.v |
|- V = ( Base ` U ) |
4 |
|
hdmapln1.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmapln1.t |
|- .x. = ( .s ` U ) |
6 |
|
hdmapln1.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmapln1.b |
|- B = ( Base ` R ) |
8 |
|
hdmapln1.q |
|- .+^ = ( +g ` R ) |
9 |
|
hdmapln1.m |
|- .X. = ( .r ` R ) |
10 |
|
hdmapln1.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapln1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmapln1.x |
|- ( ph -> X e. V ) |
13 |
|
hdmapln1.y |
|- ( ph -> Y e. V ) |
14 |
|
hdmapln1.z |
|- ( ph -> Z e. V ) |
15 |
|
hdmapln1.a |
|- ( ph -> A e. B ) |
16 |
1 2 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
17 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
18 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
19 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
20 |
1 2 3 17 18 10 11 14
|
hdmapcl |
|- ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
21 |
1 17 18 2 19 11 20
|
lcdvbaselfl |
|- ( ph -> ( S ` Z ) e. ( LFnl ` U ) ) |
22 |
3 4 6 5 7 8 9 19
|
lfli |
|- ( ( U e. LMod /\ ( S ` Z ) e. ( LFnl ` U ) /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( S ` Z ) ` ( ( A .x. X ) .+ Y ) ) = ( ( A .X. ( ( S ` Z ) ` X ) ) .+^ ( ( S ` Z ) ` Y ) ) ) |
23 |
16 21 15 12 13 22
|
syl113anc |
|- ( ph -> ( ( S ` Z ) ` ( ( A .x. X ) .+ Y ) ) = ( ( A .X. ( ( S ` Z ) ` X ) ) .+^ ( ( S ` Z ) ` Y ) ) ) |