Metamath Proof Explorer


Theorem hdmaplna1

Description: Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplna1.h
|- H = ( LHyp ` K )
hdmaplna1.u
|- U = ( ( DVecH ` K ) ` W )
hdmaplna1.v
|- V = ( Base ` U )
hdmaplna1.p
|- .+ = ( +g ` U )
hdmaplna1.r
|- R = ( Scalar ` U )
hdmaplna1.q
|- .+^ = ( +g ` R )
hdmaplna1.s
|- S = ( ( HDMap ` K ) ` W )
hdmaplna1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaplna1.x
|- ( ph -> X e. V )
hdmaplna1.y
|- ( ph -> Y e. V )
hdmaplna1.z
|- ( ph -> Z e. V )
Assertion hdmaplna1
|- ( ph -> ( ( S ` Z ) ` ( X .+ Y ) ) = ( ( ( S ` Z ) ` X ) .+^ ( ( S ` Z ) ` Y ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplna1.h
 |-  H = ( LHyp ` K )
2 hdmaplna1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaplna1.v
 |-  V = ( Base ` U )
4 hdmaplna1.p
 |-  .+ = ( +g ` U )
5 hdmaplna1.r
 |-  R = ( Scalar ` U )
6 hdmaplna1.q
 |-  .+^ = ( +g ` R )
7 hdmaplna1.s
 |-  S = ( ( HDMap ` K ) ` W )
8 hdmaplna1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 hdmaplna1.x
 |-  ( ph -> X e. V )
10 hdmaplna1.y
 |-  ( ph -> Y e. V )
11 hdmaplna1.z
 |-  ( ph -> Z e. V )
12 1 2 8 dvhlmod
 |-  ( ph -> U e. LMod )
13 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
14 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
15 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
16 1 2 3 13 14 7 8 11 hdmapcl
 |-  ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
17 1 13 14 2 15 8 16 lcdvbaselfl
 |-  ( ph -> ( S ` Z ) e. ( LFnl ` U ) )
18 5 6 3 4 15 lfladd
 |-  ( ( U e. LMod /\ ( S ` Z ) e. ( LFnl ` U ) /\ ( X e. V /\ Y e. V ) ) -> ( ( S ` Z ) ` ( X .+ Y ) ) = ( ( ( S ` Z ) ` X ) .+^ ( ( S ` Z ) ` Y ) ) )
19 12 17 9 10 18 syl112anc
 |-  ( ph -> ( ( S ` Z ) ` ( X .+ Y ) ) = ( ( ( S ` Z ) ` X ) .+^ ( ( S ` Z ) ` Y ) ) )