Metamath Proof Explorer


Theorem hdmaplna1

Description: Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplna1.h H = LHyp K
hdmaplna1.u U = DVecH K W
hdmaplna1.v V = Base U
hdmaplna1.p + ˙ = + U
hdmaplna1.r R = Scalar U
hdmaplna1.q ˙ = + R
hdmaplna1.s S = HDMap K W
hdmaplna1.k φ K HL W H
hdmaplna1.x φ X V
hdmaplna1.y φ Y V
hdmaplna1.z φ Z V
Assertion hdmaplna1 φ S Z X + ˙ Y = S Z X ˙ S Z Y

Proof

Step Hyp Ref Expression
1 hdmaplna1.h H = LHyp K
2 hdmaplna1.u U = DVecH K W
3 hdmaplna1.v V = Base U
4 hdmaplna1.p + ˙ = + U
5 hdmaplna1.r R = Scalar U
6 hdmaplna1.q ˙ = + R
7 hdmaplna1.s S = HDMap K W
8 hdmaplna1.k φ K HL W H
9 hdmaplna1.x φ X V
10 hdmaplna1.y φ Y V
11 hdmaplna1.z φ Z V
12 1 2 8 dvhlmod φ U LMod
13 eqid LCDual K W = LCDual K W
14 eqid Base LCDual K W = Base LCDual K W
15 eqid LFnl U = LFnl U
16 1 2 3 13 14 7 8 11 hdmapcl φ S Z Base LCDual K W
17 1 13 14 2 15 8 16 lcdvbaselfl φ S Z LFnl U
18 5 6 3 4 15 lfladd U LMod S Z LFnl U X V Y V S Z X + ˙ Y = S Z X ˙ S Z Y
19 12 17 9 10 18 syl112anc φ S Z X + ˙ Y = S Z X ˙ S Z Y