Metamath Proof Explorer


Theorem hdmapln1

Description: Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapln1.h H = LHyp K
hdmapln1.u U = DVecH K W
hdmapln1.v V = Base U
hdmapln1.p + ˙ = + U
hdmapln1.t · ˙ = U
hdmapln1.r R = Scalar U
hdmapln1.b B = Base R
hdmapln1.q ˙ = + R
hdmapln1.m × ˙ = R
hdmapln1.s S = HDMap K W
hdmapln1.k φ K HL W H
hdmapln1.x φ X V
hdmapln1.y φ Y V
hdmapln1.z φ Z V
hdmapln1.a φ A B
Assertion hdmapln1 φ S Z A · ˙ X + ˙ Y = A × ˙ S Z X ˙ S Z Y

Proof

Step Hyp Ref Expression
1 hdmapln1.h H = LHyp K
2 hdmapln1.u U = DVecH K W
3 hdmapln1.v V = Base U
4 hdmapln1.p + ˙ = + U
5 hdmapln1.t · ˙ = U
6 hdmapln1.r R = Scalar U
7 hdmapln1.b B = Base R
8 hdmapln1.q ˙ = + R
9 hdmapln1.m × ˙ = R
10 hdmapln1.s S = HDMap K W
11 hdmapln1.k φ K HL W H
12 hdmapln1.x φ X V
13 hdmapln1.y φ Y V
14 hdmapln1.z φ Z V
15 hdmapln1.a φ A B
16 1 2 11 dvhlmod φ U LMod
17 eqid LCDual K W = LCDual K W
18 eqid Base LCDual K W = Base LCDual K W
19 eqid LFnl U = LFnl U
20 1 2 3 17 18 10 11 14 hdmapcl φ S Z Base LCDual K W
21 1 17 18 2 19 11 20 lcdvbaselfl φ S Z LFnl U
22 3 4 6 5 7 8 9 19 lfli U LMod S Z LFnl U A B X V Y V S Z A · ˙ X + ˙ Y = A × ˙ S Z X ˙ S Z Y
23 16 21 15 12 13 22 syl113anc φ S Z A · ˙ X + ˙ Y = A × ˙ S Z X ˙ S Z Y