| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip0com.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapip0com.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapip0com.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapip0com.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hdmapip0com.z |  |-  .0. = ( 0g ` R ) | 
						
							| 6 |  | hdmapip0com.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 7 |  | hdmapip0com.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | hdmapip0com.x |  |-  ( ph -> X e. V ) | 
						
							| 9 |  | hdmapip0com.y |  |-  ( ph -> Y e. V ) | 
						
							| 10 |  | eqid |  |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) | 
						
							| 11 | 1 10 2 3 7 9 8 | dochsncom |  |-  ( ph -> ( Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) ) | 
						
							| 12 | 1 10 2 3 4 5 6 7 8 9 | hdmapellkr |  |-  ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) | 
						
							| 13 | 1 10 2 3 4 5 6 7 9 8 | hdmapellkr |  |-  ( ph -> ( ( ( S ` Y ) ` X ) = .0. <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4d |  |-  ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> ( ( S ` Y ) ` X ) = .0. ) ) |