Metamath Proof Explorer


Theorem hdmapip0com

Description: Commutation property of Baer's sigma map (Holland's A map). Line 20 of Holland95 p. 14. Also part of Lemma 1 of Baer p. 110 line 7. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0com.h
|- H = ( LHyp ` K )
hdmapip0com.u
|- U = ( ( DVecH ` K ) ` W )
hdmapip0com.v
|- V = ( Base ` U )
hdmapip0com.r
|- R = ( Scalar ` U )
hdmapip0com.z
|- .0. = ( 0g ` R )
hdmapip0com.s
|- S = ( ( HDMap ` K ) ` W )
hdmapip0com.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapip0com.x
|- ( ph -> X e. V )
hdmapip0com.y
|- ( ph -> Y e. V )
Assertion hdmapip0com
|- ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> ( ( S ` Y ) ` X ) = .0. ) )

Proof

Step Hyp Ref Expression
1 hdmapip0com.h
 |-  H = ( LHyp ` K )
2 hdmapip0com.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapip0com.v
 |-  V = ( Base ` U )
4 hdmapip0com.r
 |-  R = ( Scalar ` U )
5 hdmapip0com.z
 |-  .0. = ( 0g ` R )
6 hdmapip0com.s
 |-  S = ( ( HDMap ` K ) ` W )
7 hdmapip0com.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 hdmapip0com.x
 |-  ( ph -> X e. V )
9 hdmapip0com.y
 |-  ( ph -> Y e. V )
10 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
11 1 10 2 3 7 9 8 dochsncom
 |-  ( ph -> ( Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) )
12 1 10 2 3 4 5 6 7 8 9 hdmapellkr
 |-  ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> Y e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) )
13 1 10 2 3 4 5 6 7 9 8 hdmapellkr
 |-  ( ph -> ( ( ( S ` Y ) ` X ) = .0. <-> X e. ( ( ( ocH ` K ) ` W ) ` { Y } ) ) )
14 11 12 13 3bitr4d
 |-  ( ph -> ( ( ( S ` X ) ` Y ) = .0. <-> ( ( S ` Y ) ` X ) = .0. ) )