Metamath Proof Explorer


Theorem hdmapip0com

Description: Commutation property of Baer's sigma map (Holland's A map). Line 20 of Holland95 p. 14. Also part of Lemma 1 of Baer p. 110 line 7. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0com.h H=LHypK
hdmapip0com.u U=DVecHKW
hdmapip0com.v V=BaseU
hdmapip0com.r R=ScalarU
hdmapip0com.z 0˙=0R
hdmapip0com.s S=HDMapKW
hdmapip0com.k φKHLWH
hdmapip0com.x φXV
hdmapip0com.y φYV
Assertion hdmapip0com φSXY=0˙SYX=0˙

Proof

Step Hyp Ref Expression
1 hdmapip0com.h H=LHypK
2 hdmapip0com.u U=DVecHKW
3 hdmapip0com.v V=BaseU
4 hdmapip0com.r R=ScalarU
5 hdmapip0com.z 0˙=0R
6 hdmapip0com.s S=HDMapKW
7 hdmapip0com.k φKHLWH
8 hdmapip0com.x φXV
9 hdmapip0com.y φYV
10 eqid ocHKW=ocHKW
11 1 10 2 3 7 9 8 dochsncom φYocHKWXXocHKWY
12 1 10 2 3 4 5 6 7 8 9 hdmapellkr φSXY=0˙YocHKWX
13 1 10 2 3 4 5 6 7 9 8 hdmapellkr φSYX=0˙XocHKWY
14 11 12 13 3bitr4d φSXY=0˙SYX=0˙