Description: Line 27 in Baer p. 110. We use C for Baer's u. Our unit vector E has the required properties for his w by hdmapevec2 . Our ( ( SE )C ) means the inner product <. C , E >. i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmapinvlem1.h | |
|
hdmapinvlem1.e | |
||
hdmapinvlem1.o | |
||
hdmapinvlem1.u | |
||
hdmapinvlem1.v | |
||
hdmapinvlem1.r | |
||
hdmapinvlem1.b | |
||
hdmapinvlem1.t | |
||
hdmapinvlem1.z | |
||
hdmapinvlem1.s | |
||
hdmapinvlem1.k | |
||
hdmapinvlem1.c | |
||
Assertion | hdmapinvlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapinvlem1.h | |
|
2 | hdmapinvlem1.e | |
|
3 | hdmapinvlem1.o | |
|
4 | hdmapinvlem1.u | |
|
5 | hdmapinvlem1.v | |
|
6 | hdmapinvlem1.r | |
|
7 | hdmapinvlem1.b | |
|
8 | hdmapinvlem1.t | |
|
9 | hdmapinvlem1.z | |
|
10 | hdmapinvlem1.s | |
|
11 | hdmapinvlem1.k | |
|
12 | hdmapinvlem1.c | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 1 15 16 4 5 17 2 11 | dvheveccl | |
19 | 18 | eldifad | |
20 | 1 3 4 5 13 14 10 11 19 | hdmaplkr | |
21 | 12 20 | eleqtrrd | |
22 | 1 4 11 | dvhlmod | |
23 | eqid | |
|
24 | eqid | |
|
25 | 1 4 5 23 24 10 11 19 | hdmapcl | |
26 | 1 23 24 4 13 11 25 | lcdvbaselfl | |
27 | 19 | snssd | |
28 | 1 4 5 3 | dochssv | |
29 | 11 27 28 | syl2anc | |
30 | 29 12 | sseldd | |
31 | 5 6 9 13 14 22 26 30 | ellkr2 | |
32 | 21 31 | mpbid | |