Metamath Proof Explorer


Theorem hdmapinvlem1

Description: Line 27 in Baer p. 110. We use C for Baer's u. Our unit vector E has the required properties for his w by hdmapevec2 . Our ( ( SE )C ) means the inner product <. C , E >. i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem1.h H=LHypK
hdmapinvlem1.e E=IBaseKILTrnKW
hdmapinvlem1.o O=ocHKW
hdmapinvlem1.u U=DVecHKW
hdmapinvlem1.v V=BaseU
hdmapinvlem1.r R=ScalarU
hdmapinvlem1.b B=BaseR
hdmapinvlem1.t ·˙=R
hdmapinvlem1.z 0˙=0R
hdmapinvlem1.s S=HDMapKW
hdmapinvlem1.k φKHLWH
hdmapinvlem1.c φCOE
Assertion hdmapinvlem1 φSEC=0˙

Proof

Step Hyp Ref Expression
1 hdmapinvlem1.h H=LHypK
2 hdmapinvlem1.e E=IBaseKILTrnKW
3 hdmapinvlem1.o O=ocHKW
4 hdmapinvlem1.u U=DVecHKW
5 hdmapinvlem1.v V=BaseU
6 hdmapinvlem1.r R=ScalarU
7 hdmapinvlem1.b B=BaseR
8 hdmapinvlem1.t ·˙=R
9 hdmapinvlem1.z 0˙=0R
10 hdmapinvlem1.s S=HDMapKW
11 hdmapinvlem1.k φKHLWH
12 hdmapinvlem1.c φCOE
13 eqid LFnlU=LFnlU
14 eqid LKerU=LKerU
15 eqid BaseK=BaseK
16 eqid LTrnKW=LTrnKW
17 eqid 0U=0U
18 1 15 16 4 5 17 2 11 dvheveccl φEV0U
19 18 eldifad φEV
20 1 3 4 5 13 14 10 11 19 hdmaplkr φLKerUSE=OE
21 12 20 eleqtrrd φCLKerUSE
22 1 4 11 dvhlmod φULMod
23 eqid LCDualKW=LCDualKW
24 eqid BaseLCDualKW=BaseLCDualKW
25 1 4 5 23 24 10 11 19 hdmapcl φSEBaseLCDualKW
26 1 23 24 4 13 11 25 lcdvbaselfl φSELFnlU
27 19 snssd φEV
28 1 4 5 3 dochssv KHLWHEVOEV
29 11 27 28 syl2anc φOEV
30 29 12 sseldd φCV
31 5 6 9 13 14 22 26 30 ellkr2 φCLKerUSESEC=0˙
32 21 31 mpbid φSEC=0˙