Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapinvlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapinvlem1.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapinvlem1.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapinvlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapinvlem1.v |
|- V = ( Base ` U ) |
6 |
|
hdmapinvlem1.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmapinvlem1.b |
|- B = ( Base ` R ) |
8 |
|
hdmapinvlem1.t |
|- .x. = ( .r ` R ) |
9 |
|
hdmapinvlem1.z |
|- .0. = ( 0g ` R ) |
10 |
|
hdmapinvlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapinvlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hdmapinvlem1.c |
|- ( ph -> C e. ( O ` { E } ) ) |
13 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
14 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
17 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
18 |
1 15 16 4 5 17 2 11
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
19 |
18
|
eldifad |
|- ( ph -> E e. V ) |
20 |
1 3 4 5 13 14 10 11 19
|
hdmaplkr |
|- ( ph -> ( ( LKer ` U ) ` ( S ` E ) ) = ( O ` { E } ) ) |
21 |
12 20
|
eleqtrrd |
|- ( ph -> C e. ( ( LKer ` U ) ` ( S ` E ) ) ) |
22 |
1 4 11
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
24 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
25 |
1 4 5 23 24 10 11 19
|
hdmapcl |
|- ( ph -> ( S ` E ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
26 |
1 23 24 4 13 11 25
|
lcdvbaselfl |
|- ( ph -> ( S ` E ) e. ( LFnl ` U ) ) |
27 |
19
|
snssd |
|- ( ph -> { E } C_ V ) |
28 |
1 4 5 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) |
29 |
11 27 28
|
syl2anc |
|- ( ph -> ( O ` { E } ) C_ V ) |
30 |
29 12
|
sseldd |
|- ( ph -> C e. V ) |
31 |
5 6 9 13 14 22 26 30
|
ellkr2 |
|- ( ph -> ( C e. ( ( LKer ` U ) ` ( S ` E ) ) <-> ( ( S ` E ) ` C ) = .0. ) ) |
32 |
21 31
|
mpbid |
|- ( ph -> ( ( S ` E ) ` C ) = .0. ) |