Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapinvlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapinvlem1.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapinvlem1.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapinvlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapinvlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapinvlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmapinvlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmapinvlem1.t |
⊢ · = ( .r ‘ 𝑅 ) |
9 |
|
hdmapinvlem1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
10 |
|
hdmapinvlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapinvlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapinvlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
13 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
18 |
1 15 16 4 5 17 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
19 |
18
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
20 |
1 3 4 5 13 14 10 11 19
|
hdmaplkr |
⊢ ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) = ( 𝑂 ‘ { 𝐸 } ) ) |
21 |
12 20
|
eleqtrrd |
⊢ ( 𝜑 → 𝐶 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) ) |
22 |
1 4 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
23 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
25 |
1 4 5 23 24 10 11 19
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
26 |
1 23 24 4 13 11 25
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐸 ) ∈ ( LFnl ‘ 𝑈 ) ) |
27 |
19
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
28 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
29 |
11 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
30 |
29 12
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
31 |
5 6 9 13 14 22 26 30
|
ellkr2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) ↔ ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) ) |
32 |
21 31
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) |