| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapinvlem1.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapinvlem1.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapinvlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapinvlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapinvlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmapinvlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmapinvlem1.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 9 |  | hdmapinvlem1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 10 |  | hdmapinvlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmapinvlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmapinvlem1.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 13 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 14 |  | eqid | ⊢ ( LKer ‘ 𝑈 )  =  ( LKer ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 16 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 18 | 1 15 16 4 5 17 2 11 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 19 | 18 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 20 | 1 3 4 5 13 14 10 11 19 | hdmaplkr | ⊢ ( 𝜑  →  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) )  =  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 21 | 12 20 | eleqtrrd | ⊢ ( 𝜑  →  𝐶  ∈  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) ) ) | 
						
							| 22 | 1 4 11 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 25 | 1 4 5 23 24 10 11 19 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 26 | 1 23 24 4 13 11 25 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐸 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 27 | 19 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 28 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 29 | 11 27 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 30 | 29 12 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 31 | 5 6 9 13 14 22 26 30 | ellkr2 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝐸 ) )  ↔  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  =   0  ) ) | 
						
							| 32 | 21 31 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  =   0  ) |