| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapinvlem1.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapinvlem1.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapinvlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapinvlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapinvlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmapinvlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmapinvlem1.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 9 |  | hdmapinvlem1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 10 |  | hdmapinvlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmapinvlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hdmapinvlem1.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | hdmapinvlem1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  =   0  ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 15 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 17 | 1 14 15 4 5 16 2 11 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 18 | 17 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 19 | 18 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 20 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 21 | 11 19 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 22 | 21 12 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 23 | 1 4 5 6 9 10 11 18 22 | hdmapip0com | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 )  =   0   ↔  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 )  =   0  ) ) | 
						
							| 24 | 13 23 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 )  =   0  ) |