Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapinvlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapinvlem1.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapinvlem1.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapinvlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapinvlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapinvlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmapinvlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmapinvlem1.t |
⊢ · = ( .r ‘ 𝑅 ) |
9 |
|
hdmapinvlem1.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
10 |
|
hdmapinvlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapinvlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapinvlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
hdmapinvlem1 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
17 |
1 14 15 4 5 16 2 11
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
18 |
17
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
19 |
18
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
20 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
21 |
11 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
22 |
21 12
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
23 |
1 4 5 6 9 10 11 18 22
|
hdmapip0com |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐶 ) = 0 ↔ ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) = 0 ) ) |
24 |
13 23
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐸 ) = 0 ) |