| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip0com.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapip0com.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapip0com.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapip0com.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hdmapip0com.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | hdmapip0com.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapip0com.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | hdmapip0com.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | hdmapip0com.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 | 1 10 2 3 7 9 8 | dochsncom | ⊢ ( 𝜑  →  ( 𝑌  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } )  ↔  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) ) | 
						
							| 12 | 1 10 2 3 4 5 6 7 8 9 | hdmapellkr | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 )  =   0   ↔  𝑌  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) | 
						
							| 13 | 1 10 2 3 4 5 6 7 9 8 | hdmapellkr | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  =   0   ↔  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) ) | 
						
							| 14 | 11 12 13 | 3bitr4d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 )  =   0   ↔  ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  =   0  ) ) |