Metamath Proof Explorer


Theorem hdmapip0com

Description: Commutation property of Baer's sigma map (Holland's A map). Line 20 of Holland95 p. 14. Also part of Lemma 1 of Baer p. 110 line 7. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0com.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapip0com.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapip0com.v 𝑉 = ( Base ‘ 𝑈 )
hdmapip0com.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapip0com.z 0 = ( 0g𝑅 )
hdmapip0com.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapip0com.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapip0com.x ( 𝜑𝑋𝑉 )
hdmapip0com.y ( 𝜑𝑌𝑉 )
Assertion hdmapip0com ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0 ↔ ( ( 𝑆𝑌 ) ‘ 𝑋 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 hdmapip0com.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapip0com.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapip0com.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapip0com.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hdmapip0com.z 0 = ( 0g𝑅 )
6 hdmapip0com.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapip0com.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 hdmapip0com.x ( 𝜑𝑋𝑉 )
9 hdmapip0com.y ( 𝜑𝑌𝑉 )
10 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
11 1 10 2 3 7 9 8 dochsncom ( 𝜑 → ( 𝑌 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ↔ 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) )
12 1 10 2 3 4 5 6 7 8 9 hdmapellkr ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0𝑌 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) )
13 1 10 2 3 4 5 6 7 9 8 hdmapellkr ( 𝜑 → ( ( ( 𝑆𝑌 ) ‘ 𝑋 ) = 0𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) )
14 11 12 13 3bitr4d ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0 ↔ ( ( 𝑆𝑌 ) ‘ 𝑋 ) = 0 ) )