Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapip0com.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapip0com.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapip0com.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapip0com.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
hdmapip0com.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
hdmapip0com.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
hdmapip0com.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
hdmapip0com.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
hdmapip0com.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 10 2 3 7 9 8
|
dochsncom |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ↔ 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) ) |
12 |
1 10 2 3 4 5 6 7 8 9
|
hdmapellkr |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = 0 ↔ 𝑌 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) |
13 |
1 10 2 3 4 5 6 7 9 8
|
hdmapellkr |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) = 0 ↔ 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑌 } ) ) ) |
14 |
11 12 13
|
3bitr4d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = 0 ↔ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) = 0 ) ) |