Metamath Proof Explorer


Theorem hdmapinvlem2

Description: Line 28 in Baer p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmapinvlem1.h H = LHyp K
hdmapinvlem1.e E = I Base K I LTrn K W
hdmapinvlem1.o O = ocH K W
hdmapinvlem1.u U = DVecH K W
hdmapinvlem1.v V = Base U
hdmapinvlem1.r R = Scalar U
hdmapinvlem1.b B = Base R
hdmapinvlem1.t · ˙ = R
hdmapinvlem1.z 0 ˙ = 0 R
hdmapinvlem1.s S = HDMap K W
hdmapinvlem1.k φ K HL W H
hdmapinvlem1.c φ C O E
Assertion hdmapinvlem2 φ S C E = 0 ˙

Proof

Step Hyp Ref Expression
1 hdmapinvlem1.h H = LHyp K
2 hdmapinvlem1.e E = I Base K I LTrn K W
3 hdmapinvlem1.o O = ocH K W
4 hdmapinvlem1.u U = DVecH K W
5 hdmapinvlem1.v V = Base U
6 hdmapinvlem1.r R = Scalar U
7 hdmapinvlem1.b B = Base R
8 hdmapinvlem1.t · ˙ = R
9 hdmapinvlem1.z 0 ˙ = 0 R
10 hdmapinvlem1.s S = HDMap K W
11 hdmapinvlem1.k φ K HL W H
12 hdmapinvlem1.c φ C O E
13 1 2 3 4 5 6 7 8 9 10 11 12 hdmapinvlem1 φ S E C = 0 ˙
14 eqid Base K = Base K
15 eqid LTrn K W = LTrn K W
16 eqid 0 U = 0 U
17 1 14 15 4 5 16 2 11 dvheveccl φ E V 0 U
18 17 eldifad φ E V
19 18 snssd φ E V
20 1 4 5 3 dochssv K HL W H E V O E V
21 11 19 20 syl2anc φ O E V
22 21 12 sseldd φ C V
23 1 4 5 6 9 10 11 18 22 hdmapip0com φ S E C = 0 ˙ S C E = 0 ˙
24 13 23 mpbid φ S C E = 0 ˙