| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapinvlem1.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapinvlem1.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapinvlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapinvlem1.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapinvlem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmapinvlem1.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmapinvlem1.t |  |-  .x. = ( .r ` R ) | 
						
							| 9 |  | hdmapinvlem1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 10 |  | hdmapinvlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapinvlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hdmapinvlem1.c |  |-  ( ph -> C e. ( O ` { E } ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | hdmapinvlem1 |  |-  ( ph -> ( ( S ` E ) ` C ) = .0. ) | 
						
							| 14 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 15 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 17 | 1 14 15 4 5 16 2 11 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 18 | 17 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 19 | 18 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 20 | 1 4 5 3 | dochssv |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) | 
						
							| 21 | 11 19 20 | syl2anc |  |-  ( ph -> ( O ` { E } ) C_ V ) | 
						
							| 22 | 21 12 | sseldd |  |-  ( ph -> C e. V ) | 
						
							| 23 | 1 4 5 6 9 10 11 18 22 | hdmapip0com |  |-  ( ph -> ( ( ( S ` E ) ` C ) = .0. <-> ( ( S ` C ) ` E ) = .0. ) ) | 
						
							| 24 | 13 23 | mpbid |  |-  ( ph -> ( ( S ` C ) ` E ) = .0. ) |