| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem3.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapinvlem3.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapinvlem3.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapinvlem3.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapinvlem3.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapinvlem3.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | hdmapinvlem3.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | hdmapinvlem3.q |  |-  .x. = ( .s ` U ) | 
						
							| 9 |  | hdmapinvlem3.r |  |-  R = ( Scalar ` U ) | 
						
							| 10 |  | hdmapinvlem3.b |  |-  B = ( Base ` R ) | 
						
							| 11 |  | hdmapinvlem3.t |  |-  .X. = ( .r ` R ) | 
						
							| 12 |  | hdmapinvlem3.z |  |-  .0. = ( 0g ` R ) | 
						
							| 13 |  | hdmapinvlem3.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 14 |  | hdmapinvlem3.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 15 |  | hdmapinvlem3.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | hdmapinvlem3.c |  |-  ( ph -> C e. ( O ` { E } ) ) | 
						
							| 17 |  | hdmapinvlem3.d |  |-  ( ph -> D e. ( O ` { E } ) ) | 
						
							| 18 |  | hdmapinvlem3.i |  |-  ( ph -> I e. B ) | 
						
							| 19 |  | hdmapinvlem3.j |  |-  ( ph -> J e. B ) | 
						
							| 20 |  | hdmapinvlem3.ij |  |-  ( ph -> ( I .X. ( G ` J ) ) = ( ( S ` D ) ` C ) ) | 
						
							| 21 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 22 |  | eqid |  |-  ( -g ` ( ( LCDual ` K ) ` W ) ) = ( -g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 23 | 1 4 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 24 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 25 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 27 | 1 24 25 4 5 26 2 15 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 28 | 27 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 29 | 5 9 8 10 | lmodvscl |  |-  ( ( U e. LMod /\ J e. B /\ E e. V ) -> ( J .x. E ) e. V ) | 
						
							| 30 | 23 19 28 29 | syl3anc |  |-  ( ph -> ( J .x. E ) e. V ) | 
						
							| 31 | 28 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 32 | 1 4 5 3 | dochssv |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) | 
						
							| 33 | 15 31 32 | syl2anc |  |-  ( ph -> ( O ` { E } ) C_ V ) | 
						
							| 34 | 33 17 | sseldd |  |-  ( ph -> D e. V ) | 
						
							| 35 | 1 4 5 7 21 22 13 15 30 34 | hdmapsub |  |-  ( ph -> ( S ` ( ( J .x. E ) .- D ) ) = ( ( S ` ( J .x. E ) ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` D ) ) ) | 
						
							| 36 | 35 | fveq1d |  |-  ( ph -> ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = ( ( ( S ` ( J .x. E ) ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` D ) ) ` ( ( I .x. E ) .+ C ) ) ) | 
						
							| 37 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 38 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 39 | 1 4 5 21 38 13 15 30 | hdmapcl |  |-  ( ph -> ( S ` ( J .x. E ) ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 40 | 1 4 5 21 38 13 15 34 | hdmapcl |  |-  ( ph -> ( S ` D ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 41 | 5 9 8 10 | lmodvscl |  |-  ( ( U e. LMod /\ I e. B /\ E e. V ) -> ( I .x. E ) e. V ) | 
						
							| 42 | 23 18 28 41 | syl3anc |  |-  ( ph -> ( I .x. E ) e. V ) | 
						
							| 43 | 33 16 | sseldd |  |-  ( ph -> C e. V ) | 
						
							| 44 | 5 6 | lmodvacl |  |-  ( ( U e. LMod /\ ( I .x. E ) e. V /\ C e. V ) -> ( ( I .x. E ) .+ C ) e. V ) | 
						
							| 45 | 23 42 43 44 | syl3anc |  |-  ( ph -> ( ( I .x. E ) .+ C ) e. V ) | 
						
							| 46 | 1 4 5 9 37 21 38 22 15 39 40 45 | lcdvsubval |  |-  ( ph -> ( ( ( S ` ( J .x. E ) ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` D ) ) ` ( ( I .x. E ) .+ C ) ) = ( ( ( S ` ( J .x. E ) ) ` ( ( I .x. E ) .+ C ) ) ( -g ` R ) ( ( S ` D ) ` ( ( I .x. E ) .+ C ) ) ) ) | 
						
							| 47 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 48 | 1 4 5 6 9 47 13 15 42 43 30 | hdmaplna1 |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` ( ( I .x. E ) .+ C ) ) = ( ( ( S ` ( J .x. E ) ) ` ( I .x. E ) ) ( +g ` R ) ( ( S ` ( J .x. E ) ) ` C ) ) ) | 
						
							| 49 | 1 4 5 8 9 10 11 13 14 15 42 28 19 | hdmapglnm2 |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` ( I .x. E ) ) = ( ( ( S ` E ) ` ( I .x. E ) ) .X. ( G ` J ) ) ) | 
						
							| 50 | 1 4 5 8 9 10 11 13 15 28 28 18 | hdmaplnm1 |  |-  ( ph -> ( ( S ` E ) ` ( I .x. E ) ) = ( I .X. ( ( S ` E ) ` E ) ) ) | 
						
							| 51 |  | eqid |  |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) | 
						
							| 52 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 53 | 1 2 51 13 15 4 9 52 | hdmapevec2 |  |-  ( ph -> ( ( S ` E ) ` E ) = ( 1r ` R ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ph -> ( I .X. ( ( S ` E ) ` E ) ) = ( I .X. ( 1r ` R ) ) ) | 
						
							| 55 | 9 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 56 | 23 55 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 57 | 10 11 52 | ringridm |  |-  ( ( R e. Ring /\ I e. B ) -> ( I .X. ( 1r ` R ) ) = I ) | 
						
							| 58 | 56 18 57 | syl2anc |  |-  ( ph -> ( I .X. ( 1r ` R ) ) = I ) | 
						
							| 59 | 50 54 58 | 3eqtrd |  |-  ( ph -> ( ( S ` E ) ` ( I .x. E ) ) = I ) | 
						
							| 60 | 59 | oveq1d |  |-  ( ph -> ( ( ( S ` E ) ` ( I .x. E ) ) .X. ( G ` J ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 61 | 49 60 | eqtrd |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` ( I .x. E ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 62 | 1 4 5 8 9 10 11 13 14 15 43 28 19 | hdmapglnm2 |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` C ) = ( ( ( S ` E ) ` C ) .X. ( G ` J ) ) ) | 
						
							| 63 | 1 2 3 4 5 9 10 11 12 13 15 16 | hdmapinvlem1 |  |-  ( ph -> ( ( S ` E ) ` C ) = .0. ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ph -> ( ( ( S ` E ) ` C ) .X. ( G ` J ) ) = ( .0. .X. ( G ` J ) ) ) | 
						
							| 65 | 1 4 9 10 14 15 19 | hgmapcl |  |-  ( ph -> ( G ` J ) e. B ) | 
						
							| 66 | 10 11 12 | ringlz |  |-  ( ( R e. Ring /\ ( G ` J ) e. B ) -> ( .0. .X. ( G ` J ) ) = .0. ) | 
						
							| 67 | 56 65 66 | syl2anc |  |-  ( ph -> ( .0. .X. ( G ` J ) ) = .0. ) | 
						
							| 68 | 62 64 67 | 3eqtrd |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` C ) = .0. ) | 
						
							| 69 | 61 68 | oveq12d |  |-  ( ph -> ( ( ( S ` ( J .x. E ) ) ` ( I .x. E ) ) ( +g ` R ) ( ( S ` ( J .x. E ) ) ` C ) ) = ( ( I .X. ( G ` J ) ) ( +g ` R ) .0. ) ) | 
						
							| 70 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 71 | 56 70 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 72 | 9 10 11 | lmodmcl |  |-  ( ( U e. LMod /\ I e. B /\ ( G ` J ) e. B ) -> ( I .X. ( G ` J ) ) e. B ) | 
						
							| 73 | 23 18 65 72 | syl3anc |  |-  ( ph -> ( I .X. ( G ` J ) ) e. B ) | 
						
							| 74 | 10 47 12 | grprid |  |-  ( ( R e. Grp /\ ( I .X. ( G ` J ) ) e. B ) -> ( ( I .X. ( G ` J ) ) ( +g ` R ) .0. ) = ( I .X. ( G ` J ) ) ) | 
						
							| 75 | 71 73 74 | syl2anc |  |-  ( ph -> ( ( I .X. ( G ` J ) ) ( +g ` R ) .0. ) = ( I .X. ( G ` J ) ) ) | 
						
							| 76 | 48 69 75 | 3eqtrd |  |-  ( ph -> ( ( S ` ( J .x. E ) ) ` ( ( I .x. E ) .+ C ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 77 | 1 4 5 6 9 47 13 15 42 43 34 | hdmaplna1 |  |-  ( ph -> ( ( S ` D ) ` ( ( I .x. E ) .+ C ) ) = ( ( ( S ` D ) ` ( I .x. E ) ) ( +g ` R ) ( ( S ` D ) ` C ) ) ) | 
						
							| 78 | 1 4 5 8 9 10 11 13 15 28 34 18 | hdmaplnm1 |  |-  ( ph -> ( ( S ` D ) ` ( I .x. E ) ) = ( I .X. ( ( S ` D ) ` E ) ) ) | 
						
							| 79 | 1 2 3 4 5 9 10 11 12 13 15 17 | hdmapinvlem2 |  |-  ( ph -> ( ( S ` D ) ` E ) = .0. ) | 
						
							| 80 | 79 | oveq2d |  |-  ( ph -> ( I .X. ( ( S ` D ) ` E ) ) = ( I .X. .0. ) ) | 
						
							| 81 | 10 11 12 | ringrz |  |-  ( ( R e. Ring /\ I e. B ) -> ( I .X. .0. ) = .0. ) | 
						
							| 82 | 56 18 81 | syl2anc |  |-  ( ph -> ( I .X. .0. ) = .0. ) | 
						
							| 83 | 78 80 82 | 3eqtrrd |  |-  ( ph -> .0. = ( ( S ` D ) ` ( I .x. E ) ) ) | 
						
							| 84 | 83 20 | oveq12d |  |-  ( ph -> ( .0. ( +g ` R ) ( I .X. ( G ` J ) ) ) = ( ( ( S ` D ) ` ( I .x. E ) ) ( +g ` R ) ( ( S ` D ) ` C ) ) ) | 
						
							| 85 | 10 47 12 | grplid |  |-  ( ( R e. Grp /\ ( I .X. ( G ` J ) ) e. B ) -> ( .0. ( +g ` R ) ( I .X. ( G ` J ) ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 86 | 71 73 85 | syl2anc |  |-  ( ph -> ( .0. ( +g ` R ) ( I .X. ( G ` J ) ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 87 | 77 84 86 | 3eqtr2d |  |-  ( ph -> ( ( S ` D ) ` ( ( I .x. E ) .+ C ) ) = ( I .X. ( G ` J ) ) ) | 
						
							| 88 | 76 87 | oveq12d |  |-  ( ph -> ( ( ( S ` ( J .x. E ) ) ` ( ( I .x. E ) .+ C ) ) ( -g ` R ) ( ( S ` D ) ` ( ( I .x. E ) .+ C ) ) ) = ( ( I .X. ( G ` J ) ) ( -g ` R ) ( I .X. ( G ` J ) ) ) ) | 
						
							| 89 | 46 88 | eqtrd |  |-  ( ph -> ( ( ( S ` ( J .x. E ) ) ( -g ` ( ( LCDual ` K ) ` W ) ) ( S ` D ) ) ` ( ( I .x. E ) .+ C ) ) = ( ( I .X. ( G ` J ) ) ( -g ` R ) ( I .X. ( G ` J ) ) ) ) | 
						
							| 90 | 10 12 37 | grpsubid |  |-  ( ( R e. Grp /\ ( I .X. ( G ` J ) ) e. B ) -> ( ( I .X. ( G ` J ) ) ( -g ` R ) ( I .X. ( G ` J ) ) ) = .0. ) | 
						
							| 91 | 71 73 90 | syl2anc |  |-  ( ph -> ( ( I .X. ( G ` J ) ) ( -g ` R ) ( I .X. ( G ` J ) ) ) = .0. ) | 
						
							| 92 | 36 89 91 | 3eqtrd |  |-  ( ph -> ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = .0. ) |