Metamath Proof Explorer


Theorem hdmapglnm2

Description: g-linear property of second (inner product) argument. Line 19 in Holland95 p. 14. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmapglnm2.h
|- H = ( LHyp ` K )
hdmapglnm2.u
|- U = ( ( DVecH ` K ) ` W )
hdmapglnm2.v
|- V = ( Base ` U )
hdmapglnm2.t
|- .x. = ( .s ` U )
hdmapglnm2.r
|- R = ( Scalar ` U )
hdmapglnm2.b
|- B = ( Base ` R )
hdmapglnm2.m
|- .X. = ( .r ` R )
hdmapglnm2.s
|- S = ( ( HDMap ` K ) ` W )
hdmapglnm2.g
|- G = ( ( HGMap ` K ) ` W )
hdmapglnm2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapglnm2.x
|- ( ph -> X e. V )
hdmapglnm2.y
|- ( ph -> Y e. V )
hdmapglnm2.z
|- ( ph -> A e. B )
Assertion hdmapglnm2
|- ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) )

Proof

Step Hyp Ref Expression
1 hdmapglnm2.h
 |-  H = ( LHyp ` K )
2 hdmapglnm2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapglnm2.v
 |-  V = ( Base ` U )
4 hdmapglnm2.t
 |-  .x. = ( .s ` U )
5 hdmapglnm2.r
 |-  R = ( Scalar ` U )
6 hdmapglnm2.b
 |-  B = ( Base ` R )
7 hdmapglnm2.m
 |-  .X. = ( .r ` R )
8 hdmapglnm2.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmapglnm2.g
 |-  G = ( ( HGMap ` K ) ` W )
10 hdmapglnm2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 hdmapglnm2.x
 |-  ( ph -> X e. V )
12 hdmapglnm2.y
 |-  ( ph -> Y e. V )
13 hdmapglnm2.z
 |-  ( ph -> A e. B )
14 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
15 eqid
 |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) )
16 1 2 3 4 5 6 14 15 8 9 10 12 13 hgmapvs
 |-  ( ph -> ( S ` ( A .x. Y ) ) = ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) )
17 16 fveq1d
 |-  ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ` X ) )
18 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
19 1 2 5 6 9 10 13 hgmapcl
 |-  ( ph -> ( G ` A ) e. B )
20 1 2 3 14 18 8 10 12 hdmapcl
 |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
21 1 2 3 5 6 7 14 18 15 10 19 20 11 lcdvsval
 |-  ( ph -> ( ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) )
22 17 21 eqtrd
 |-  ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) )