Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglnm2.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapglnm2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapglnm2.v |
|- V = ( Base ` U ) |
4 |
|
hdmapglnm2.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmapglnm2.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmapglnm2.b |
|- B = ( Base ` R ) |
7 |
|
hdmapglnm2.m |
|- .X. = ( .r ` R ) |
8 |
|
hdmapglnm2.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmapglnm2.g |
|- G = ( ( HGMap ` K ) ` W ) |
10 |
|
hdmapglnm2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
hdmapglnm2.x |
|- ( ph -> X e. V ) |
12 |
|
hdmapglnm2.y |
|- ( ph -> Y e. V ) |
13 |
|
hdmapglnm2.z |
|- ( ph -> A e. B ) |
14 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
15 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
16 |
1 2 3 4 5 6 14 15 8 9 10 12 13
|
hgmapvs |
|- ( ph -> ( S ` ( A .x. Y ) ) = ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ) |
17 |
16
|
fveq1d |
|- ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ` X ) ) |
18 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
19 |
1 2 5 6 9 10 13
|
hgmapcl |
|- ( ph -> ( G ` A ) e. B ) |
20 |
1 2 3 14 18 8 10 12
|
hdmapcl |
|- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
21 |
1 2 3 5 6 7 14 18 15 10 19 20 11
|
lcdvsval |
|- ( ph -> ( ( ( G ` A ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( S ` Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) ) |
22 |
17 21
|
eqtrd |
|- ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) ) |