Metamath Proof Explorer


Theorem hdmapglnm2

Description: g-linear property of second (inner product) argument. Line 19 in Holland95 p. 14. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmapglnm2.h H = LHyp K
hdmapglnm2.u U = DVecH K W
hdmapglnm2.v V = Base U
hdmapglnm2.t · ˙ = U
hdmapglnm2.r R = Scalar U
hdmapglnm2.b B = Base R
hdmapglnm2.m × ˙ = R
hdmapglnm2.s S = HDMap K W
hdmapglnm2.g G = HGMap K W
hdmapglnm2.k φ K HL W H
hdmapglnm2.x φ X V
hdmapglnm2.y φ Y V
hdmapglnm2.z φ A B
Assertion hdmapglnm2 φ S A · ˙ Y X = S Y X × ˙ G A

Proof

Step Hyp Ref Expression
1 hdmapglnm2.h H = LHyp K
2 hdmapglnm2.u U = DVecH K W
3 hdmapglnm2.v V = Base U
4 hdmapglnm2.t · ˙ = U
5 hdmapglnm2.r R = Scalar U
6 hdmapglnm2.b B = Base R
7 hdmapglnm2.m × ˙ = R
8 hdmapglnm2.s S = HDMap K W
9 hdmapglnm2.g G = HGMap K W
10 hdmapglnm2.k φ K HL W H
11 hdmapglnm2.x φ X V
12 hdmapglnm2.y φ Y V
13 hdmapglnm2.z φ A B
14 eqid LCDual K W = LCDual K W
15 eqid LCDual K W = LCDual K W
16 1 2 3 4 5 6 14 15 8 9 10 12 13 hgmapvs φ S A · ˙ Y = G A LCDual K W S Y
17 16 fveq1d φ S A · ˙ Y X = G A LCDual K W S Y X
18 eqid Base LCDual K W = Base LCDual K W
19 1 2 5 6 9 10 13 hgmapcl φ G A B
20 1 2 3 14 18 8 10 12 hdmapcl φ S Y Base LCDual K W
21 1 2 3 5 6 7 14 18 15 10 19 20 11 lcdvsval φ G A LCDual K W S Y X = S Y X × ˙ G A
22 17 21 eqtrd φ S A · ˙ Y X = S Y X × ˙ G A