Metamath Proof Explorer


Theorem hdmapgln2

Description: g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapgln2.h H=LHypK
hdmapgln2.u U=DVecHKW
hdmapgln2.v V=BaseU
hdmapgln2.p +˙=+U
hdmapgln2.t ·˙=U
hdmapgln2.r R=ScalarU
hdmapgln2.b B=BaseR
hdmapgln2.q ˙=+R
hdmapgln2.m ×˙=R
hdmapgln2.s S=HDMapKW
hdmapgln2.g G=HGMapKW
hdmapgln2.k φKHLWH
hdmapgln2.x φXV
hdmapgln2.y φYV
hdmapgln2.z φZV
hdmapgln2.a φAB
Assertion hdmapgln2 φSA·˙Y+˙ZX=SYX×˙GA˙SZX

Proof

Step Hyp Ref Expression
1 hdmapgln2.h H=LHypK
2 hdmapgln2.u U=DVecHKW
3 hdmapgln2.v V=BaseU
4 hdmapgln2.p +˙=+U
5 hdmapgln2.t ·˙=U
6 hdmapgln2.r R=ScalarU
7 hdmapgln2.b B=BaseR
8 hdmapgln2.q ˙=+R
9 hdmapgln2.m ×˙=R
10 hdmapgln2.s S=HDMapKW
11 hdmapgln2.g G=HGMapKW
12 hdmapgln2.k φKHLWH
13 hdmapgln2.x φXV
14 hdmapgln2.y φYV
15 hdmapgln2.z φZV
16 hdmapgln2.a φAB
17 1 2 12 dvhlmod φULMod
18 3 6 5 7 lmodvscl ULModABYVA·˙YV
19 17 16 14 18 syl3anc φA·˙YV
20 1 2 3 4 6 8 10 12 13 19 15 hdmaplna2 φSA·˙Y+˙ZX=SA·˙YX˙SZX
21 1 2 3 5 6 7 9 10 11 12 13 14 16 hdmapglnm2 φSA·˙YX=SYX×˙GA
22 21 oveq1d φSA·˙YX˙SZX=SYX×˙GA˙SZX
23 20 22 eqtrd φSA·˙Y+˙ZX=SYX×˙GA˙SZX