Metamath Proof Explorer


Theorem hdmapgln2

Description: g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapgln2.h
|- H = ( LHyp ` K )
hdmapgln2.u
|- U = ( ( DVecH ` K ) ` W )
hdmapgln2.v
|- V = ( Base ` U )
hdmapgln2.p
|- .+ = ( +g ` U )
hdmapgln2.t
|- .x. = ( .s ` U )
hdmapgln2.r
|- R = ( Scalar ` U )
hdmapgln2.b
|- B = ( Base ` R )
hdmapgln2.q
|- .+^ = ( +g ` R )
hdmapgln2.m
|- .X. = ( .r ` R )
hdmapgln2.s
|- S = ( ( HDMap ` K ) ` W )
hdmapgln2.g
|- G = ( ( HGMap ` K ) ` W )
hdmapgln2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapgln2.x
|- ( ph -> X e. V )
hdmapgln2.y
|- ( ph -> Y e. V )
hdmapgln2.z
|- ( ph -> Z e. V )
hdmapgln2.a
|- ( ph -> A e. B )
Assertion hdmapgln2
|- ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) )

Proof

Step Hyp Ref Expression
1 hdmapgln2.h
 |-  H = ( LHyp ` K )
2 hdmapgln2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapgln2.v
 |-  V = ( Base ` U )
4 hdmapgln2.p
 |-  .+ = ( +g ` U )
5 hdmapgln2.t
 |-  .x. = ( .s ` U )
6 hdmapgln2.r
 |-  R = ( Scalar ` U )
7 hdmapgln2.b
 |-  B = ( Base ` R )
8 hdmapgln2.q
 |-  .+^ = ( +g ` R )
9 hdmapgln2.m
 |-  .X. = ( .r ` R )
10 hdmapgln2.s
 |-  S = ( ( HDMap ` K ) ` W )
11 hdmapgln2.g
 |-  G = ( ( HGMap ` K ) ` W )
12 hdmapgln2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 hdmapgln2.x
 |-  ( ph -> X e. V )
14 hdmapgln2.y
 |-  ( ph -> Y e. V )
15 hdmapgln2.z
 |-  ( ph -> Z e. V )
16 hdmapgln2.a
 |-  ( ph -> A e. B )
17 1 2 12 dvhlmod
 |-  ( ph -> U e. LMod )
18 3 6 5 7 lmodvscl
 |-  ( ( U e. LMod /\ A e. B /\ Y e. V ) -> ( A .x. Y ) e. V )
19 17 16 14 18 syl3anc
 |-  ( ph -> ( A .x. Y ) e. V )
20 1 2 3 4 6 8 10 12 13 19 15 hdmaplna2
 |-  ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) )
21 1 2 3 5 6 7 9 10 11 12 13 14 16 hdmapglnm2
 |-  ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) )
22 21 oveq1d
 |-  ( ph -> ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) )
23 20 22 eqtrd
 |-  ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) )