| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapgln2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapgln2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapgln2.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapgln2.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmapgln2.t |  |-  .x. = ( .s ` U ) | 
						
							| 6 |  | hdmapgln2.r |  |-  R = ( Scalar ` U ) | 
						
							| 7 |  | hdmapgln2.b |  |-  B = ( Base ` R ) | 
						
							| 8 |  | hdmapgln2.q |  |-  .+^ = ( +g ` R ) | 
						
							| 9 |  | hdmapgln2.m |  |-  .X. = ( .r ` R ) | 
						
							| 10 |  | hdmapgln2.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hdmapgln2.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 12 |  | hdmapgln2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | hdmapgln2.x |  |-  ( ph -> X e. V ) | 
						
							| 14 |  | hdmapgln2.y |  |-  ( ph -> Y e. V ) | 
						
							| 15 |  | hdmapgln2.z |  |-  ( ph -> Z e. V ) | 
						
							| 16 |  | hdmapgln2.a |  |-  ( ph -> A e. B ) | 
						
							| 17 | 1 2 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 18 | 3 6 5 7 | lmodvscl |  |-  ( ( U e. LMod /\ A e. B /\ Y e. V ) -> ( A .x. Y ) e. V ) | 
						
							| 19 | 17 16 14 18 | syl3anc |  |-  ( ph -> ( A .x. Y ) e. V ) | 
						
							| 20 | 1 2 3 4 6 8 10 12 13 19 15 | hdmaplna2 |  |-  ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) | 
						
							| 21 | 1 2 3 5 6 7 9 10 11 12 13 14 16 | hdmapglnm2 |  |-  ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ph -> ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) ) | 
						
							| 23 | 20 22 | eqtrd |  |-  ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) ) |