Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapgln2.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapgln2.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapgln2.v |
|- V = ( Base ` U ) |
4 |
|
hdmapgln2.p |
|- .+ = ( +g ` U ) |
5 |
|
hdmapgln2.t |
|- .x. = ( .s ` U ) |
6 |
|
hdmapgln2.r |
|- R = ( Scalar ` U ) |
7 |
|
hdmapgln2.b |
|- B = ( Base ` R ) |
8 |
|
hdmapgln2.q |
|- .+^ = ( +g ` R ) |
9 |
|
hdmapgln2.m |
|- .X. = ( .r ` R ) |
10 |
|
hdmapgln2.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hdmapgln2.g |
|- G = ( ( HGMap ` K ) ` W ) |
12 |
|
hdmapgln2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
hdmapgln2.x |
|- ( ph -> X e. V ) |
14 |
|
hdmapgln2.y |
|- ( ph -> Y e. V ) |
15 |
|
hdmapgln2.z |
|- ( ph -> Z e. V ) |
16 |
|
hdmapgln2.a |
|- ( ph -> A e. B ) |
17 |
1 2 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
3 6 5 7
|
lmodvscl |
|- ( ( U e. LMod /\ A e. B /\ Y e. V ) -> ( A .x. Y ) e. V ) |
19 |
17 16 14 18
|
syl3anc |
|- ( ph -> ( A .x. Y ) e. V ) |
20 |
1 2 3 4 6 8 10 12 13 19 15
|
hdmaplna2 |
|- ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) |
21 |
1 2 3 5 6 7 9 10 11 12 13 14 16
|
hdmapglnm2 |
|- ( ph -> ( ( S ` ( A .x. Y ) ) ` X ) = ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( ( S ` ( A .x. Y ) ) ` X ) .+^ ( ( S ` Z ) ` X ) ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) ) |
23 |
20 22
|
eqtrd |
|- ( ph -> ( ( S ` ( ( A .x. Y ) .+ Z ) ) ` X ) = ( ( ( ( S ` Y ) ` X ) .X. ( G ` A ) ) .+^ ( ( S ` Z ) ` X ) ) ) |