| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplna2.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaplna2.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaplna2.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaplna2.p |  |-  .+ = ( +g ` U ) | 
						
							| 5 |  | hdmaplna2.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmaplna2.q |  |-  .+^ = ( +g ` R ) | 
						
							| 7 |  | hdmaplna2.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmaplna2.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmaplna2.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | hdmaplna2.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | hdmaplna2.z |  |-  ( ph -> Z e. V ) | 
						
							| 12 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 13 |  | eqid |  |-  ( +g ` ( ( LCDual ` K ) ` W ) ) = ( +g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 14 | 1 2 3 4 12 13 7 8 10 11 | hdmapadd |  |-  ( ph -> ( S ` ( Y .+ Z ) ) = ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) ) | 
						
							| 16 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 17 | 1 2 3 12 16 7 8 10 | hdmapcl |  |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 18 | 1 2 3 12 16 7 8 11 | hdmapcl |  |-  ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 19 | 1 2 3 5 6 12 16 13 8 17 18 9 | lcdvaddval |  |-  ( ph -> ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) | 
						
							| 20 | 15 19 | eqtrd |  |-  ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) |