Metamath Proof Explorer


Theorem hdmaplna2

Description: Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmaplna2.h
|- H = ( LHyp ` K )
hdmaplna2.u
|- U = ( ( DVecH ` K ) ` W )
hdmaplna2.v
|- V = ( Base ` U )
hdmaplna2.p
|- .+ = ( +g ` U )
hdmaplna2.r
|- R = ( Scalar ` U )
hdmaplna2.q
|- .+^ = ( +g ` R )
hdmaplna2.s
|- S = ( ( HDMap ` K ) ` W )
hdmaplna2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaplna2.x
|- ( ph -> X e. V )
hdmaplna2.y
|- ( ph -> Y e. V )
hdmaplna2.z
|- ( ph -> Z e. V )
Assertion hdmaplna2
|- ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplna2.h
 |-  H = ( LHyp ` K )
2 hdmaplna2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaplna2.v
 |-  V = ( Base ` U )
4 hdmaplna2.p
 |-  .+ = ( +g ` U )
5 hdmaplna2.r
 |-  R = ( Scalar ` U )
6 hdmaplna2.q
 |-  .+^ = ( +g ` R )
7 hdmaplna2.s
 |-  S = ( ( HDMap ` K ) ` W )
8 hdmaplna2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 hdmaplna2.x
 |-  ( ph -> X e. V )
10 hdmaplna2.y
 |-  ( ph -> Y e. V )
11 hdmaplna2.z
 |-  ( ph -> Z e. V )
12 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
13 eqid
 |-  ( +g ` ( ( LCDual ` K ) ` W ) ) = ( +g ` ( ( LCDual ` K ) ` W ) )
14 1 2 3 4 12 13 7 8 10 11 hdmapadd
 |-  ( ph -> ( S ` ( Y .+ Z ) ) = ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) )
15 14 fveq1d
 |-  ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) )
16 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
17 1 2 3 12 16 7 8 10 hdmapcl
 |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
18 1 2 3 12 16 7 8 11 hdmapcl
 |-  ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
19 1 2 3 5 6 12 16 13 8 17 18 9 lcdvaddval
 |-  ( ph -> ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) )
20 15 19 eqtrd
 |-  ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) )