| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaplna2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaplna2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmaplna2.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmaplna2.p |
|- .+ = ( +g ` U ) |
| 5 |
|
hdmaplna2.r |
|- R = ( Scalar ` U ) |
| 6 |
|
hdmaplna2.q |
|- .+^ = ( +g ` R ) |
| 7 |
|
hdmaplna2.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 8 |
|
hdmaplna2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
hdmaplna2.x |
|- ( ph -> X e. V ) |
| 10 |
|
hdmaplna2.y |
|- ( ph -> Y e. V ) |
| 11 |
|
hdmaplna2.z |
|- ( ph -> Z e. V ) |
| 12 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 13 |
|
eqid |
|- ( +g ` ( ( LCDual ` K ) ` W ) ) = ( +g ` ( ( LCDual ` K ) ` W ) ) |
| 14 |
1 2 3 4 12 13 7 8 10 11
|
hdmapadd |
|- ( ph -> ( S ` ( Y .+ Z ) ) = ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ) |
| 15 |
14
|
fveq1d |
|- ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) ) |
| 16 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 17 |
1 2 3 12 16 7 8 10
|
hdmapcl |
|- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 18 |
1 2 3 12 16 7 8 11
|
hdmapcl |
|- ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 19 |
1 2 3 5 6 12 16 13 8 17 18 9
|
lcdvaddval |
|- ( ph -> ( ( ( S ` Y ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( S ` Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) |
| 20 |
15 19
|
eqtrd |
|- ( ph -> ( ( S ` ( Y .+ Z ) ) ` X ) = ( ( ( S ` Y ) ` X ) .+^ ( ( S ` Z ) ` X ) ) ) |