Metamath Proof Explorer


Theorem hdmaplna2

Description: Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmaplna2.h H = LHyp K
hdmaplna2.u U = DVecH K W
hdmaplna2.v V = Base U
hdmaplna2.p + ˙ = + U
hdmaplna2.r R = Scalar U
hdmaplna2.q ˙ = + R
hdmaplna2.s S = HDMap K W
hdmaplna2.k φ K HL W H
hdmaplna2.x φ X V
hdmaplna2.y φ Y V
hdmaplna2.z φ Z V
Assertion hdmaplna2 φ S Y + ˙ Z X = S Y X ˙ S Z X

Proof

Step Hyp Ref Expression
1 hdmaplna2.h H = LHyp K
2 hdmaplna2.u U = DVecH K W
3 hdmaplna2.v V = Base U
4 hdmaplna2.p + ˙ = + U
5 hdmaplna2.r R = Scalar U
6 hdmaplna2.q ˙ = + R
7 hdmaplna2.s S = HDMap K W
8 hdmaplna2.k φ K HL W H
9 hdmaplna2.x φ X V
10 hdmaplna2.y φ Y V
11 hdmaplna2.z φ Z V
12 eqid LCDual K W = LCDual K W
13 eqid + LCDual K W = + LCDual K W
14 1 2 3 4 12 13 7 8 10 11 hdmapadd φ S Y + ˙ Z = S Y + LCDual K W S Z
15 14 fveq1d φ S Y + ˙ Z X = S Y + LCDual K W S Z X
16 eqid Base LCDual K W = Base LCDual K W
17 1 2 3 12 16 7 8 10 hdmapcl φ S Y Base LCDual K W
18 1 2 3 12 16 7 8 11 hdmapcl φ S Z Base LCDual K W
19 1 2 3 5 6 12 16 13 8 17 18 9 lcdvaddval φ S Y + LCDual K W S Z X = S Y X ˙ S Z X
20 15 19 eqtrd φ S Y + ˙ Z X = S Y X ˙ S Z X