Metamath Proof Explorer


Theorem hdmaplna2

Description: Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses hdmaplna2.h H=LHypK
hdmaplna2.u U=DVecHKW
hdmaplna2.v V=BaseU
hdmaplna2.p +˙=+U
hdmaplna2.r R=ScalarU
hdmaplna2.q ˙=+R
hdmaplna2.s S=HDMapKW
hdmaplna2.k φKHLWH
hdmaplna2.x φXV
hdmaplna2.y φYV
hdmaplna2.z φZV
Assertion hdmaplna2 φSY+˙ZX=SYX˙SZX

Proof

Step Hyp Ref Expression
1 hdmaplna2.h H=LHypK
2 hdmaplna2.u U=DVecHKW
3 hdmaplna2.v V=BaseU
4 hdmaplna2.p +˙=+U
5 hdmaplna2.r R=ScalarU
6 hdmaplna2.q ˙=+R
7 hdmaplna2.s S=HDMapKW
8 hdmaplna2.k φKHLWH
9 hdmaplna2.x φXV
10 hdmaplna2.y φYV
11 hdmaplna2.z φZV
12 eqid LCDualKW=LCDualKW
13 eqid +LCDualKW=+LCDualKW
14 1 2 3 4 12 13 7 8 10 11 hdmapadd φSY+˙Z=SY+LCDualKWSZ
15 14 fveq1d φSY+˙ZX=SY+LCDualKWSZX
16 eqid BaseLCDualKW=BaseLCDualKW
17 1 2 3 12 16 7 8 10 hdmapcl φSYBaseLCDualKW
18 1 2 3 12 16 7 8 11 hdmapcl φSZBaseLCDualKW
19 1 2 3 5 6 12 16 13 8 17 18 9 lcdvaddval φSY+LCDualKWSZX=SYX˙SZX
20 15 19 eqtrd φSY+˙ZX=SYX˙SZX