Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapinvlem3.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapinvlem3.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapinvlem3.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapinvlem3.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapinvlem3.v |
|- V = ( Base ` U ) |
6 |
|
hdmapinvlem3.p |
|- .+ = ( +g ` U ) |
7 |
|
hdmapinvlem3.m |
|- .- = ( -g ` U ) |
8 |
|
hdmapinvlem3.q |
|- .x. = ( .s ` U ) |
9 |
|
hdmapinvlem3.r |
|- R = ( Scalar ` U ) |
10 |
|
hdmapinvlem3.b |
|- B = ( Base ` R ) |
11 |
|
hdmapinvlem3.t |
|- .X. = ( .r ` R ) |
12 |
|
hdmapinvlem3.z |
|- .0. = ( 0g ` R ) |
13 |
|
hdmapinvlem3.s |
|- S = ( ( HDMap ` K ) ` W ) |
14 |
|
hdmapinvlem3.g |
|- G = ( ( HGMap ` K ) ` W ) |
15 |
|
hdmapinvlem3.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
hdmapinvlem3.c |
|- ( ph -> C e. ( O ` { E } ) ) |
17 |
|
hdmapinvlem3.d |
|- ( ph -> D e. ( O ` { E } ) ) |
18 |
|
hdmapinvlem3.i |
|- ( ph -> I e. B ) |
19 |
|
hdmapinvlem3.j |
|- ( ph -> J e. B ) |
20 |
|
hdmapinvlem3.ij |
|- ( ph -> ( I .X. ( G ` J ) ) = ( ( S ` D ) ` C ) ) |
21 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
22 |
1 4 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
25 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
26 |
1 23 24 4 5 25 2 15
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
27 |
26
|
eldifad |
|- ( ph -> E e. V ) |
28 |
5 9 8 10
|
lmodvscl |
|- ( ( U e. LMod /\ J e. B /\ E e. V ) -> ( J .x. E ) e. V ) |
29 |
22 19 27 28
|
syl3anc |
|- ( ph -> ( J .x. E ) e. V ) |
30 |
27
|
snssd |
|- ( ph -> { E } C_ V ) |
31 |
1 4 5 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) |
32 |
15 30 31
|
syl2anc |
|- ( ph -> ( O ` { E } ) C_ V ) |
33 |
32 17
|
sseldd |
|- ( ph -> D e. V ) |
34 |
5 9 8 10
|
lmodvscl |
|- ( ( U e. LMod /\ I e. B /\ E e. V ) -> ( I .x. E ) e. V ) |
35 |
22 18 27 34
|
syl3anc |
|- ( ph -> ( I .x. E ) e. V ) |
36 |
32 16
|
sseldd |
|- ( ph -> C e. V ) |
37 |
5 6
|
lmodvacl |
|- ( ( U e. LMod /\ ( I .x. E ) e. V /\ C e. V ) -> ( ( I .x. E ) .+ C ) e. V ) |
38 |
22 35 36 37
|
syl3anc |
|- ( ph -> ( ( I .x. E ) .+ C ) e. V ) |
39 |
1 4 5 7 9 21 13 15 29 33 38
|
hdmaplns1 |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = ( ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) ( -g ` R ) ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
hdmapinvlem3 |
|- ( ph -> ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = .0. ) |
41 |
5 7
|
lmodvsubcl |
|- ( ( U e. LMod /\ ( J .x. E ) e. V /\ D e. V ) -> ( ( J .x. E ) .- D ) e. V ) |
42 |
22 29 33 41
|
syl3anc |
|- ( ph -> ( ( J .x. E ) .- D ) e. V ) |
43 |
1 4 5 9 12 13 15 42 38
|
hdmapip0com |
|- ( ph -> ( ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = .0. <-> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = .0. ) ) |
44 |
40 43
|
mpbid |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = .0. ) |
45 |
1 4 5 8 9 10 11 13 15 27 38 19
|
hdmaplnm1 |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) = ( J .X. ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) ) ) |
46 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
47 |
1 4 5 6 9 46 13 15 27 35 36
|
hdmaplna2 |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) = ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) ( ( S ` C ) ` E ) ) ) |
48 |
1 2 3 4 5 9 10 11 12 13 15 16
|
hdmapinvlem2 |
|- ( ph -> ( ( S ` C ) ` E ) = .0. ) |
49 |
48
|
oveq2d |
|- ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) ( ( S ` C ) ` E ) ) = ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) ) |
50 |
9
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
51 |
22 50
|
syl |
|- ( ph -> R e. Ring ) |
52 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
53 |
51 52
|
syl |
|- ( ph -> R e. Grp ) |
54 |
1 4 5 9 10 13 15 27 35
|
hdmapipcl |
|- ( ph -> ( ( S ` ( I .x. E ) ) ` E ) e. B ) |
55 |
10 46 12
|
grprid |
|- ( ( R e. Grp /\ ( ( S ` ( I .x. E ) ) ` E ) e. B ) -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( ( S ` ( I .x. E ) ) ` E ) ) |
56 |
53 54 55
|
syl2anc |
|- ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( ( S ` ( I .x. E ) ) ` E ) ) |
57 |
1 4 5 8 9 10 11 13 14 15 27 27 18
|
hdmapglnm2 |
|- ( ph -> ( ( S ` ( I .x. E ) ) ` E ) = ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) ) |
58 |
|
eqid |
|- ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) |
59 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
60 |
1 2 58 13 15 4 9 59
|
hdmapevec2 |
|- ( ph -> ( ( S ` E ) ` E ) = ( 1r ` R ) ) |
61 |
60
|
oveq1d |
|- ( ph -> ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) = ( ( 1r ` R ) .X. ( G ` I ) ) ) |
62 |
1 4 9 10 14 15 18
|
hgmapcl |
|- ( ph -> ( G ` I ) e. B ) |
63 |
10 11 59
|
ringlidm |
|- ( ( R e. Ring /\ ( G ` I ) e. B ) -> ( ( 1r ` R ) .X. ( G ` I ) ) = ( G ` I ) ) |
64 |
51 62 63
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .X. ( G ` I ) ) = ( G ` I ) ) |
65 |
61 64
|
eqtrd |
|- ( ph -> ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) = ( G ` I ) ) |
66 |
56 57 65
|
3eqtrd |
|- ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( G ` I ) ) |
67 |
47 49 66
|
3eqtrd |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) = ( G ` I ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( J .X. ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) ) = ( J .X. ( G ` I ) ) ) |
69 |
45 68
|
eqtrd |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) = ( J .X. ( G ` I ) ) ) |
70 |
1 4 5 6 9 46 13 15 33 35 36
|
hdmaplna2 |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) = ( ( ( S ` ( I .x. E ) ) ` D ) ( +g ` R ) ( ( S ` C ) ` D ) ) ) |
71 |
1 4 5 8 9 10 11 13 14 15 33 27 18
|
hdmapglnm2 |
|- ( ph -> ( ( S ` ( I .x. E ) ) ` D ) = ( ( ( S ` E ) ` D ) .X. ( G ` I ) ) ) |
72 |
1 2 3 4 5 9 10 11 12 13 15 17
|
hdmapinvlem1 |
|- ( ph -> ( ( S ` E ) ` D ) = .0. ) |
73 |
72
|
oveq1d |
|- ( ph -> ( ( ( S ` E ) ` D ) .X. ( G ` I ) ) = ( .0. .X. ( G ` I ) ) ) |
74 |
10 11 12
|
ringlz |
|- ( ( R e. Ring /\ ( G ` I ) e. B ) -> ( .0. .X. ( G ` I ) ) = .0. ) |
75 |
51 62 74
|
syl2anc |
|- ( ph -> ( .0. .X. ( G ` I ) ) = .0. ) |
76 |
71 73 75
|
3eqtrd |
|- ( ph -> ( ( S ` ( I .x. E ) ) ` D ) = .0. ) |
77 |
76
|
oveq1d |
|- ( ph -> ( ( ( S ` ( I .x. E ) ) ` D ) ( +g ` R ) ( ( S ` C ) ` D ) ) = ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) ) |
78 |
1 4 5 9 10 13 15 33 36
|
hdmapipcl |
|- ( ph -> ( ( S ` C ) ` D ) e. B ) |
79 |
10 46 12
|
grplid |
|- ( ( R e. Grp /\ ( ( S ` C ) ` D ) e. B ) -> ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) = ( ( S ` C ) ` D ) ) |
80 |
53 78 79
|
syl2anc |
|- ( ph -> ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) = ( ( S ` C ) ` D ) ) |
81 |
70 77 80
|
3eqtrd |
|- ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) = ( ( S ` C ) ` D ) ) |
82 |
69 81
|
oveq12d |
|- ( ph -> ( ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) ( -g ` R ) ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) ) = ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) ) |
83 |
39 44 82
|
3eqtr3rd |
|- ( ph -> ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. ) |
84 |
9 10 11
|
lmodmcl |
|- ( ( U e. LMod /\ J e. B /\ ( G ` I ) e. B ) -> ( J .X. ( G ` I ) ) e. B ) |
85 |
22 19 62 84
|
syl3anc |
|- ( ph -> ( J .X. ( G ` I ) ) e. B ) |
86 |
10 12 21
|
grpsubeq0 |
|- ( ( R e. Grp /\ ( J .X. ( G ` I ) ) e. B /\ ( ( S ` C ) ` D ) e. B ) -> ( ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. <-> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) ) |
87 |
53 85 78 86
|
syl3anc |
|- ( ph -> ( ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. <-> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) ) |
88 |
83 87
|
mpbid |
|- ( ph -> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) |