| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapinvlem3.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapinvlem3.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapinvlem3.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapinvlem3.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapinvlem3.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapinvlem3.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | hdmapinvlem3.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | hdmapinvlem3.q |  |-  .x. = ( .s ` U ) | 
						
							| 9 |  | hdmapinvlem3.r |  |-  R = ( Scalar ` U ) | 
						
							| 10 |  | hdmapinvlem3.b |  |-  B = ( Base ` R ) | 
						
							| 11 |  | hdmapinvlem3.t |  |-  .X. = ( .r ` R ) | 
						
							| 12 |  | hdmapinvlem3.z |  |-  .0. = ( 0g ` R ) | 
						
							| 13 |  | hdmapinvlem3.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 14 |  | hdmapinvlem3.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 15 |  | hdmapinvlem3.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | hdmapinvlem3.c |  |-  ( ph -> C e. ( O ` { E } ) ) | 
						
							| 17 |  | hdmapinvlem3.d |  |-  ( ph -> D e. ( O ` { E } ) ) | 
						
							| 18 |  | hdmapinvlem3.i |  |-  ( ph -> I e. B ) | 
						
							| 19 |  | hdmapinvlem3.j |  |-  ( ph -> J e. B ) | 
						
							| 20 |  | hdmapinvlem3.ij |  |-  ( ph -> ( I .X. ( G ` J ) ) = ( ( S ` D ) ` C ) ) | 
						
							| 21 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 22 | 1 4 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 23 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 24 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 26 | 1 23 24 4 5 25 2 15 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 27 | 26 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 28 | 5 9 8 10 | lmodvscl |  |-  ( ( U e. LMod /\ J e. B /\ E e. V ) -> ( J .x. E ) e. V ) | 
						
							| 29 | 22 19 27 28 | syl3anc |  |-  ( ph -> ( J .x. E ) e. V ) | 
						
							| 30 | 27 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 31 | 1 4 5 3 | dochssv |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) | 
						
							| 32 | 15 30 31 | syl2anc |  |-  ( ph -> ( O ` { E } ) C_ V ) | 
						
							| 33 | 32 17 | sseldd |  |-  ( ph -> D e. V ) | 
						
							| 34 | 5 9 8 10 | lmodvscl |  |-  ( ( U e. LMod /\ I e. B /\ E e. V ) -> ( I .x. E ) e. V ) | 
						
							| 35 | 22 18 27 34 | syl3anc |  |-  ( ph -> ( I .x. E ) e. V ) | 
						
							| 36 | 32 16 | sseldd |  |-  ( ph -> C e. V ) | 
						
							| 37 | 5 6 | lmodvacl |  |-  ( ( U e. LMod /\ ( I .x. E ) e. V /\ C e. V ) -> ( ( I .x. E ) .+ C ) e. V ) | 
						
							| 38 | 22 35 36 37 | syl3anc |  |-  ( ph -> ( ( I .x. E ) .+ C ) e. V ) | 
						
							| 39 | 1 4 5 7 9 21 13 15 29 33 38 | hdmaplns1 |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = ( ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) ( -g ` R ) ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | hdmapinvlem3 |  |-  ( ph -> ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = .0. ) | 
						
							| 41 | 5 7 | lmodvsubcl |  |-  ( ( U e. LMod /\ ( J .x. E ) e. V /\ D e. V ) -> ( ( J .x. E ) .- D ) e. V ) | 
						
							| 42 | 22 29 33 41 | syl3anc |  |-  ( ph -> ( ( J .x. E ) .- D ) e. V ) | 
						
							| 43 | 1 4 5 9 12 13 15 42 38 | hdmapip0com |  |-  ( ph -> ( ( ( S ` ( ( J .x. E ) .- D ) ) ` ( ( I .x. E ) .+ C ) ) = .0. <-> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = .0. ) ) | 
						
							| 44 | 40 43 | mpbid |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( ( J .x. E ) .- D ) ) = .0. ) | 
						
							| 45 | 1 4 5 8 9 10 11 13 15 27 38 19 | hdmaplnm1 |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) = ( J .X. ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) ) ) | 
						
							| 46 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 47 | 1 4 5 6 9 46 13 15 27 35 36 | hdmaplna2 |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) = ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) ( ( S ` C ) ` E ) ) ) | 
						
							| 48 | 1 2 3 4 5 9 10 11 12 13 15 16 | hdmapinvlem2 |  |-  ( ph -> ( ( S ` C ) ` E ) = .0. ) | 
						
							| 49 | 48 | oveq2d |  |-  ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) ( ( S ` C ) ` E ) ) = ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) ) | 
						
							| 50 | 9 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 51 | 22 50 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 52 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 53 | 51 52 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 54 | 1 4 5 9 10 13 15 27 35 | hdmapipcl |  |-  ( ph -> ( ( S ` ( I .x. E ) ) ` E ) e. B ) | 
						
							| 55 | 10 46 12 | grprid |  |-  ( ( R e. Grp /\ ( ( S ` ( I .x. E ) ) ` E ) e. B ) -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( ( S ` ( I .x. E ) ) ` E ) ) | 
						
							| 56 | 53 54 55 | syl2anc |  |-  ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( ( S ` ( I .x. E ) ) ` E ) ) | 
						
							| 57 | 1 4 5 8 9 10 11 13 14 15 27 27 18 | hdmapglnm2 |  |-  ( ph -> ( ( S ` ( I .x. E ) ) ` E ) = ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) ) | 
						
							| 58 |  | eqid |  |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) | 
						
							| 59 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 60 | 1 2 58 13 15 4 9 59 | hdmapevec2 |  |-  ( ph -> ( ( S ` E ) ` E ) = ( 1r ` R ) ) | 
						
							| 61 | 60 | oveq1d |  |-  ( ph -> ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) = ( ( 1r ` R ) .X. ( G ` I ) ) ) | 
						
							| 62 | 1 4 9 10 14 15 18 | hgmapcl |  |-  ( ph -> ( G ` I ) e. B ) | 
						
							| 63 | 10 11 59 | ringlidm |  |-  ( ( R e. Ring /\ ( G ` I ) e. B ) -> ( ( 1r ` R ) .X. ( G ` I ) ) = ( G ` I ) ) | 
						
							| 64 | 51 62 63 | syl2anc |  |-  ( ph -> ( ( 1r ` R ) .X. ( G ` I ) ) = ( G ` I ) ) | 
						
							| 65 | 61 64 | eqtrd |  |-  ( ph -> ( ( ( S ` E ) ` E ) .X. ( G ` I ) ) = ( G ` I ) ) | 
						
							| 66 | 56 57 65 | 3eqtrd |  |-  ( ph -> ( ( ( S ` ( I .x. E ) ) ` E ) ( +g ` R ) .0. ) = ( G ` I ) ) | 
						
							| 67 | 47 49 66 | 3eqtrd |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) = ( G ` I ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ph -> ( J .X. ( ( S ` ( ( I .x. E ) .+ C ) ) ` E ) ) = ( J .X. ( G ` I ) ) ) | 
						
							| 69 | 45 68 | eqtrd |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) = ( J .X. ( G ` I ) ) ) | 
						
							| 70 | 1 4 5 6 9 46 13 15 33 35 36 | hdmaplna2 |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) = ( ( ( S ` ( I .x. E ) ) ` D ) ( +g ` R ) ( ( S ` C ) ` D ) ) ) | 
						
							| 71 | 1 4 5 8 9 10 11 13 14 15 33 27 18 | hdmapglnm2 |  |-  ( ph -> ( ( S ` ( I .x. E ) ) ` D ) = ( ( ( S ` E ) ` D ) .X. ( G ` I ) ) ) | 
						
							| 72 | 1 2 3 4 5 9 10 11 12 13 15 17 | hdmapinvlem1 |  |-  ( ph -> ( ( S ` E ) ` D ) = .0. ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ph -> ( ( ( S ` E ) ` D ) .X. ( G ` I ) ) = ( .0. .X. ( G ` I ) ) ) | 
						
							| 74 | 10 11 12 | ringlz |  |-  ( ( R e. Ring /\ ( G ` I ) e. B ) -> ( .0. .X. ( G ` I ) ) = .0. ) | 
						
							| 75 | 51 62 74 | syl2anc |  |-  ( ph -> ( .0. .X. ( G ` I ) ) = .0. ) | 
						
							| 76 | 71 73 75 | 3eqtrd |  |-  ( ph -> ( ( S ` ( I .x. E ) ) ` D ) = .0. ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ph -> ( ( ( S ` ( I .x. E ) ) ` D ) ( +g ` R ) ( ( S ` C ) ` D ) ) = ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) ) | 
						
							| 78 | 1 4 5 9 10 13 15 33 36 | hdmapipcl |  |-  ( ph -> ( ( S ` C ) ` D ) e. B ) | 
						
							| 79 | 10 46 12 | grplid |  |-  ( ( R e. Grp /\ ( ( S ` C ) ` D ) e. B ) -> ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) = ( ( S ` C ) ` D ) ) | 
						
							| 80 | 53 78 79 | syl2anc |  |-  ( ph -> ( .0. ( +g ` R ) ( ( S ` C ) ` D ) ) = ( ( S ` C ) ` D ) ) | 
						
							| 81 | 70 77 80 | 3eqtrd |  |-  ( ph -> ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) = ( ( S ` C ) ` D ) ) | 
						
							| 82 | 69 81 | oveq12d |  |-  ( ph -> ( ( ( S ` ( ( I .x. E ) .+ C ) ) ` ( J .x. E ) ) ( -g ` R ) ( ( S ` ( ( I .x. E ) .+ C ) ) ` D ) ) = ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) ) | 
						
							| 83 | 39 44 82 | 3eqtr3rd |  |-  ( ph -> ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. ) | 
						
							| 84 | 9 10 11 | lmodmcl |  |-  ( ( U e. LMod /\ J e. B /\ ( G ` I ) e. B ) -> ( J .X. ( G ` I ) ) e. B ) | 
						
							| 85 | 22 19 62 84 | syl3anc |  |-  ( ph -> ( J .X. ( G ` I ) ) e. B ) | 
						
							| 86 | 10 12 21 | grpsubeq0 |  |-  ( ( R e. Grp /\ ( J .X. ( G ` I ) ) e. B /\ ( ( S ` C ) ` D ) e. B ) -> ( ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. <-> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) ) | 
						
							| 87 | 53 85 78 86 | syl3anc |  |-  ( ph -> ( ( ( J .X. ( G ` I ) ) ( -g ` R ) ( ( S ` C ) ` D ) ) = .0. <-> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) ) | 
						
							| 88 | 83 87 | mpbid |  |-  ( ph -> ( J .X. ( G ` I ) ) = ( ( S ` C ) ` D ) ) |