Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem5.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapglem5.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapglem5.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapglem5.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapglem5.v |
|- V = ( Base ` U ) |
6 |
|
hdmapglem5.p |
|- .+ = ( +g ` U ) |
7 |
|
hdmapglem5.m |
|- .- = ( -g ` U ) |
8 |
|
hdmapglem5.q |
|- .x. = ( .s ` U ) |
9 |
|
hdmapglem5.r |
|- R = ( Scalar ` U ) |
10 |
|
hdmapglem5.b |
|- B = ( Base ` R ) |
11 |
|
hdmapglem5.t |
|- .X. = ( .r ` R ) |
12 |
|
hdmapglem5.z |
|- .0. = ( 0g ` R ) |
13 |
|
hdmapglem5.s |
|- S = ( ( HDMap ` K ) ` W ) |
14 |
|
hdmapglem5.g |
|- G = ( ( HGMap ` K ) ` W ) |
15 |
|
hdmapglem5.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
hdmapglem5.c |
|- ( ph -> C e. ( O ` { E } ) ) |
17 |
|
hdmapglem5.d |
|- ( ph -> D e. ( O ` { E } ) ) |
18 |
|
hdmapglem5.i |
|- ( ph -> I e. B ) |
19 |
|
hdmapglem5.j |
|- ( ph -> J e. B ) |
20 |
1 4 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
21 |
9
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
22 |
20 21
|
syl |
|- ( ph -> R e. Ring ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
25 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
26 |
1 23 24 4 5 25 2 15
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
27 |
26
|
eldifad |
|- ( ph -> E e. V ) |
28 |
27
|
snssd |
|- ( ph -> { E } C_ V ) |
29 |
1 4 5 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) |
30 |
15 28 29
|
syl2anc |
|- ( ph -> ( O ` { E } ) C_ V ) |
31 |
30 16
|
sseldd |
|- ( ph -> C e. V ) |
32 |
30 17
|
sseldd |
|- ( ph -> D e. V ) |
33 |
1 4 5 9 10 13 15 31 32
|
hdmapipcl |
|- ( ph -> ( ( S ` D ) ` C ) e. B ) |
34 |
1 4 9 10 14 15 33
|
hgmapcl |
|- ( ph -> ( G ` ( ( S ` D ) ` C ) ) e. B ) |
35 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
36 |
10 11 35
|
ringlidm |
|- ( ( R e. Ring /\ ( G ` ( ( S ` D ) ` C ) ) e. B ) -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( G ` ( ( S ` D ) ` C ) ) ) |
37 |
22 34 36
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( G ` ( ( S ` D ) ` C ) ) ) |
38 |
10 35
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
39 |
22 38
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
40 |
1 4 9 35 14 15
|
hgmapval1 |
|- ( ph -> ( G ` ( 1r ` R ) ) = ( 1r ` R ) ) |
41 |
40
|
oveq2d |
|- ( ph -> ( ( ( S ` D ) ` C ) .X. ( G ` ( 1r ` R ) ) ) = ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) ) |
42 |
10 11 35
|
ringridm |
|- ( ( R e. Ring /\ ( ( S ` D ) ` C ) e. B ) -> ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) = ( ( S ` D ) ` C ) ) |
43 |
22 33 42
|
syl2anc |
|- ( ph -> ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) = ( ( S ` D ) ` C ) ) |
44 |
41 43
|
eqtrd |
|- ( ph -> ( ( ( S ` D ) ` C ) .X. ( G ` ( 1r ` R ) ) ) = ( ( S ` D ) ` C ) ) |
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44
|
hdmapinvlem4 |
|- ( ph -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( ( S ` C ) ` D ) ) |
46 |
37 45
|
eqtr3d |
|- ( ph -> ( G ` ( ( S ` D ) ` C ) ) = ( ( S ` C ) ` D ) ) |