| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem5.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapglem5.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapglem5.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapglem5.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapglem5.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapglem5.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | hdmapglem5.m |  |-  .- = ( -g ` U ) | 
						
							| 8 |  | hdmapglem5.q |  |-  .x. = ( .s ` U ) | 
						
							| 9 |  | hdmapglem5.r |  |-  R = ( Scalar ` U ) | 
						
							| 10 |  | hdmapglem5.b |  |-  B = ( Base ` R ) | 
						
							| 11 |  | hdmapglem5.t |  |-  .X. = ( .r ` R ) | 
						
							| 12 |  | hdmapglem5.z |  |-  .0. = ( 0g ` R ) | 
						
							| 13 |  | hdmapglem5.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 14 |  | hdmapglem5.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 15 |  | hdmapglem5.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | hdmapglem5.c |  |-  ( ph -> C e. ( O ` { E } ) ) | 
						
							| 17 |  | hdmapglem5.d |  |-  ( ph -> D e. ( O ` { E } ) ) | 
						
							| 18 |  | hdmapglem5.i |  |-  ( ph -> I e. B ) | 
						
							| 19 |  | hdmapglem5.j |  |-  ( ph -> J e. B ) | 
						
							| 20 | 1 4 15 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 21 | 9 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 23 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 24 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 26 | 1 23 24 4 5 25 2 15 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 27 | 26 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 28 | 27 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 29 | 1 4 5 3 | dochssv |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) | 
						
							| 30 | 15 28 29 | syl2anc |  |-  ( ph -> ( O ` { E } ) C_ V ) | 
						
							| 31 | 30 16 | sseldd |  |-  ( ph -> C e. V ) | 
						
							| 32 | 30 17 | sseldd |  |-  ( ph -> D e. V ) | 
						
							| 33 | 1 4 5 9 10 13 15 31 32 | hdmapipcl |  |-  ( ph -> ( ( S ` D ) ` C ) e. B ) | 
						
							| 34 | 1 4 9 10 14 15 33 | hgmapcl |  |-  ( ph -> ( G ` ( ( S ` D ) ` C ) ) e. B ) | 
						
							| 35 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 36 | 10 11 35 | ringlidm |  |-  ( ( R e. Ring /\ ( G ` ( ( S ` D ) ` C ) ) e. B ) -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( G ` ( ( S ` D ) ` C ) ) ) | 
						
							| 37 | 22 34 36 | syl2anc |  |-  ( ph -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( G ` ( ( S ` D ) ` C ) ) ) | 
						
							| 38 | 10 35 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 39 | 22 38 | syl |  |-  ( ph -> ( 1r ` R ) e. B ) | 
						
							| 40 | 1 4 9 35 14 15 | hgmapval1 |  |-  ( ph -> ( G ` ( 1r ` R ) ) = ( 1r ` R ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( ph -> ( ( ( S ` D ) ` C ) .X. ( G ` ( 1r ` R ) ) ) = ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) ) | 
						
							| 42 | 10 11 35 | ringridm |  |-  ( ( R e. Ring /\ ( ( S ` D ) ` C ) e. B ) -> ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) = ( ( S ` D ) ` C ) ) | 
						
							| 43 | 22 33 42 | syl2anc |  |-  ( ph -> ( ( ( S ` D ) ` C ) .X. ( 1r ` R ) ) = ( ( S ` D ) ` C ) ) | 
						
							| 44 | 41 43 | eqtrd |  |-  ( ph -> ( ( ( S ` D ) ` C ) .X. ( G ` ( 1r ` R ) ) ) = ( ( S ` D ) ` C ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44 | hdmapinvlem4 |  |-  ( ph -> ( ( 1r ` R ) .X. ( G ` ( ( S ` D ) ` C ) ) ) = ( ( S ` C ) ` D ) ) | 
						
							| 46 | 37 45 | eqtr3d |  |-  ( ph -> ( G ` ( ( S ` D ) ` C ) ) = ( ( S ` C ) ` D ) ) |