| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem5.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem5.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem5.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem5.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem5.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem5.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem5.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem5.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 9 |  | hdmapglem5.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 10 |  | hdmapglem5.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | hdmapglem5.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 12 |  | hdmapglem5.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 13 |  | hdmapglem5.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | hdmapglem5.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmapglem5.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | hdmapglem5.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 17 |  | hdmapglem5.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 18 |  | hdmapglem5.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐵 ) | 
						
							| 19 |  | hdmapglem5.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐵 ) | 
						
							| 20 | 1 4 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 21 | 9 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 24 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 26 | 1 23 24 4 5 25 2 15 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 27 | 26 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 28 | 27 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 29 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 30 | 15 28 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 31 | 30 16 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  𝑉 ) | 
						
							| 32 | 30 17 | sseldd | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 33 | 1 4 5 9 10 13 15 31 32 | hdmapipcl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ∈  𝐵 ) | 
						
							| 34 | 1 4 9 10 14 15 33 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) )  ∈  𝐵 ) | 
						
							| 35 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 36 | 10 11 35 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) )  ∈  𝐵 )  →  ( ( 1r ‘ 𝑅 )  ×  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) )  =  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) | 
						
							| 37 | 22 34 36 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ×  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) )  =  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) ) | 
						
							| 38 | 10 35 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 39 | 22 38 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 40 | 1 4 9 35 14 15 | hgmapval1 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ×  ( 𝐺 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ×  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 42 | 10 11 35 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ∈  𝐵 )  →  ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ×  ( 1r ‘ 𝑅 ) )  =  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 43 | 22 33 42 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ×  ( 1r ‘ 𝑅 ) )  =  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 44 | 41 43 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  ×  ( 𝐺 ‘ ( 1r ‘ 𝑅 ) ) )  =  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 33 39 44 | hdmapinvlem4 | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ×  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) | 
						
							| 46 | 37 45 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) |