Metamath Proof Explorer


Theorem hgmapval1

Description: Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval1.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapval1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapval1.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapval1.i 1 = ( 1r𝑅 )
hgmapval1.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapval1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hgmapval1 ( 𝜑 → ( 𝐺1 ) = 1 )

Proof

Step Hyp Ref Expression
1 hgmapval1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapval1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapval1.r 𝑅 = ( Scalar ‘ 𝑈 )
4 hgmapval1.i 1 = ( 1r𝑅 )
5 hgmapval1.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
6 hgmapval1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
8 eqid ( 0g𝑈 ) = ( 0g𝑈 )
9 1 2 7 8 6 dvh1dim ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g𝑈 ) )
10 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
12 eqid ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 1 2 3 4 10 11 12 6 lcd1 ( 𝜑 → ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = 1 )
14 13 oveq1d ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
15 14 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
16 1 10 6 lcdlmod ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod )
17 16 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod )
18 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
19 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
20 6 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
21 simp2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑈 ) )
22 1 2 7 10 18 19 20 21 hdmapcl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
23 eqid ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
24 18 11 23 12 lmodvs1 ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )
25 17 22 24 syl2anc ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )
26 15 25 eqtr3d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )
27 1 2 6 dvhlmod ( 𝜑𝑈 ∈ LMod )
28 27 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → 𝑈 ∈ LMod )
29 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
30 7 3 29 4 lmodvs1 ( ( 𝑈 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 1 ( ·𝑠𝑈 ) 𝑥 ) = 𝑥 )
31 28 21 30 syl2anc ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 1 ( ·𝑠𝑈 ) 𝑥 ) = 𝑥 )
32 31 fveq2d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1 ( ·𝑠𝑈 ) 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )
33 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
34 3 lmodring ( 𝑈 ∈ LMod → 𝑅 ∈ Ring )
35 33 4 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
36 27 34 35 3syl ( 𝜑1 ∈ ( Base ‘ 𝑅 ) )
37 36 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → 1 ∈ ( Base ‘ 𝑅 ) )
38 1 2 7 29 3 33 10 23 19 5 20 21 37 hgmapvs ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1 ( ·𝑠𝑈 ) 𝑥 ) ) = ( ( 𝐺1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
39 26 32 38 3eqtr2rd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( 𝐺1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )
40 eqid ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
41 eqid ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
42 1 10 6 lcdlvec ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec )
43 42 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec )
44 1 2 3 33 5 6 36 hgmapcl ( 𝜑 → ( 𝐺1 ) ∈ ( Base ‘ 𝑅 ) )
45 1 2 3 33 10 11 40 6 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ 𝑅 ) )
46 44 45 eleqtrrd ( 𝜑 → ( 𝐺1 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
47 46 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 𝐺1 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
48 36 45 eleqtrrd ( 𝜑1 ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
49 48 3ad2ant1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → 1 ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
50 simp3 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → 𝑥 ≠ ( 0g𝑈 ) )
51 1 2 7 8 10 41 19 20 21 hdmapeq0 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g𝑈 ) ) )
52 51 necon3bid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 ≠ ( 0g𝑈 ) ) )
53 50 52 mpbird ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
54 18 23 11 40 41 43 47 49 22 53 lvecvscan2 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( ( ( 𝐺1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ↔ ( 𝐺1 ) = 1 ) )
55 39 54 mpbid ( ( 𝜑𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g𝑈 ) ) → ( 𝐺1 ) = 1 )
56 55 rexlimdv3a ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g𝑈 ) → ( 𝐺1 ) = 1 ) )
57 9 56 mpd ( 𝜑 → ( 𝐺1 ) = 1 )