Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapval1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapval1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
4 |
|
hgmapval1.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
5 |
|
hgmapval1.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hgmapval1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
9 |
1 2 7 8 6
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g ‘ 𝑈 ) ) |
10 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
13 |
1 2 3 4 10 11 12 6
|
lcd1 |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = 1 ) |
14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
16 |
1 10 6
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
18 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑈 ) ) |
22 |
1 2 7 10 18 19 20 21
|
hdmapcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
23 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
24 |
18 11 23 12
|
lmodvs1 |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
25 |
17 22 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
26 |
15 25
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
27 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
29 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
30 |
7 3 29 4
|
lmodvs1 |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ) → ( 1 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) = 𝑥 ) |
31 |
28 21 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 1 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) = 𝑥 ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
34 |
3
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝑅 ∈ Ring ) |
35 |
33 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
36 |
27 34 35
|
3syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝑅 ) ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
38 |
1 2 7 29 3 33 10 23 19 5 20 21 37
|
hgmapvs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 1 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( ( 𝐺 ‘ 1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
39 |
26 32 38
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝐺 ‘ 1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
40 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
41 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
42 |
1 10 6
|
lcdlvec |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LVec ) |
44 |
1 2 3 33 5 6 36
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
45 |
1 2 3 33 10 11 40 6
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( Base ‘ 𝑅 ) ) |
46 |
44 45
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 1 ) ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
48 |
36 45
|
eleqtrrd |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → 1 ∈ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
50 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → 𝑥 ≠ ( 0g ‘ 𝑈 ) ) |
51 |
1 2 7 8 10 41 19 20 21
|
hdmapeq0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 = ( 0g ‘ 𝑈 ) ) ) |
52 |
51
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) ) |
53 |
50 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ≠ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
54 |
18 23 11 40 41 43 47 49 22 53
|
lvecvscan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( 𝐺 ‘ 1 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) = ( 1 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ↔ ( 𝐺 ‘ 1 ) = 1 ) ) |
55 |
39 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 1 ) = 1 ) |
56 |
55
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝑈 ) 𝑥 ≠ ( 0g ‘ 𝑈 ) → ( 𝐺 ‘ 1 ) = 1 ) ) |
57 |
9 56
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 ) |