| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapval1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapval1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmapval1.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 5 |  | hgmapval1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hgmapval1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 8 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 9 | 1 2 7 8 6 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) 𝑥  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 13 | 1 2 3 4 10 11 12 6 | lcd1 | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =   1  ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  (  1  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  (  1  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 16 | 1 10 6 | lcdlmod | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 19 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 21 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  𝑥  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 22 | 1 2 7 10 18 19 20 21 | hdmapcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 24 | 18 11 23 12 | lmodvs1 | ⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod  ∧  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 25 | 17 22 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 1r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 26 | 15 25 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  (  1  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 27 | 1 2 6 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  𝑈  ∈  LMod ) | 
						
							| 29 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 30 | 7 3 29 4 | lmodvs1 | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝑈 ) )  →  (  1  (  ·𝑠  ‘ 𝑈 ) 𝑥 )  =  𝑥 ) | 
						
							| 31 | 28 21 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  (  1  (  ·𝑠  ‘ 𝑈 ) 𝑥 )  =  𝑥 ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ (  1  (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 34 | 3 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 35 | 33 4 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 36 | 27 34 35 | 3syl | ⊢ ( 𝜑  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 1 2 7 29 3 33 10 23 19 5 20 21 37 | hgmapvs | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ (  1  (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( ( 𝐺 ‘  1  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 39 | 26 32 38 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝐺 ‘  1  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  (  1  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 42 | 1 10 6 | lcdlvec | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 43 | 42 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 44 | 1 2 3 33 5 6 36 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘  1  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 45 | 1 2 3 33 10 11 40 6 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 46 | 44 45 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐺 ‘  1  )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘  1  )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 48 | 36 45 | eleqtrrd | ⊢ ( 𝜑  →   1   ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →   1   ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 50 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  𝑥  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 51 | 1 2 7 8 10 41 19 20 21 | hdmapeq0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑥  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 52 | 51 | necon3bid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑥  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 53 | 50 52 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 )  ≠  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 54 | 18 23 11 40 41 43 47 49 22 53 | lvecvscan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( 𝐺 ‘  1  ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  =  (  1  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) )  ↔  ( 𝐺 ‘  1  )  =   1  ) ) | 
						
							| 55 | 39 54 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑥  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘  1  )  =   1  ) | 
						
							| 56 | 55 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( Base ‘ 𝑈 ) 𝑥  ≠  ( 0g ‘ 𝑈 )  →  ( 𝐺 ‘  1  )  =   1  ) ) | 
						
							| 57 | 9 56 | mpd | ⊢ ( 𝜑  →  ( 𝐺 ‘  1  )  =   1  ) |