| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem6.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem6.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem6.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem6.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem6.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | hdmapglem6.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 10 |  | hdmapglem6.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 11 |  | hdmapglem6.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 12 |  | hdmapglem6.n | ⊢ 𝑁  =  ( invr ‘ 𝑅 ) | 
						
							| 13 |  | hdmapglem6.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | hdmapglem6.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmapglem6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | hdmapglem6.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 17 |  | hdmapglem6.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 18 |  | hdmapglem6.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 19 |  | hdmapglem6.cd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  =   1  ) | 
						
							| 20 |  | hdmapglem6.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 21 |  | hdmapglem6.yx | ⊢ ( 𝜑  →  ( 𝑌  ×  ( 𝐺 ‘ 𝑋 ) )  =   1  ) | 
						
							| 22 | 1 4 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 23 | 7 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 25 | 16 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 26 | 1 4 7 8 14 15 25 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 27 | 1 4 7 8 14 15 26 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 28 | 20 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 29 | 1 4 7 8 14 15 28 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 30 | 1 4 15 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 31 | 7 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑅  ∈  DivRing ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
						
							| 33 |  | eldifsni | ⊢ ( 𝑌  ∈  ( 𝐵  ∖  {  0  } )  →  𝑌  ≠   0  ) | 
						
							| 34 | 20 33 | syl | ⊢ ( 𝜑  →  𝑌  ≠   0  ) | 
						
							| 35 | 1 4 7 8 10 14 15 28 | hgmapeq0 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑌 )  =   0   ↔  𝑌  =   0  ) ) | 
						
							| 36 | 35 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑌 )  ≠   0   ↔  𝑌  ≠   0  ) ) | 
						
							| 37 | 34 36 | mpbird | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑌 )  ≠   0  ) | 
						
							| 38 | 8 10 12 | drnginvrcl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝐺 ‘ 𝑌 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑌 )  ≠   0  )  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 39 | 32 29 37 38 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) )  ∈  𝐵 ) | 
						
							| 40 | 8 9 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑌 )  ∈  𝐵  ∧  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) )  ∈  𝐵 ) )  →  ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) | 
						
							| 41 | 24 27 29 39 40 | syl13anc | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) | 
						
							| 42 | 8 10 9 11 12 | drnginvrr | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝐺 ‘ 𝑌 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑌 )  ≠   0  )  →  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =   1  ) | 
						
							| 43 | 32 29 37 42 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =   1  ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×   1  ) ) | 
						
							| 45 | 8 9 11 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵 )  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×   1  )  =  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 46 | 24 27 45 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×   1  )  =  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 47 | 41 44 46 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) | 
						
							| 48 | 21 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑌  ×  ( 𝐺 ‘ 𝑋 ) ) )  =  ( 𝐺 ‘  1  ) ) | 
						
							| 49 | 1 4 7 8 9 14 15 28 26 | hgmapmul | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑌  ×  ( 𝐺 ‘ 𝑋 ) ) )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) ) ) | 
						
							| 50 | 48 49 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐺 ‘  1  )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) ) ) | 
						
							| 51 | 19 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) )  =  ( 𝐺 ‘  1  ) ) | 
						
							| 52 |  | eqid | ⊢ ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑈 ) | 
						
							| 53 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 54 | 1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 | hdmapglem5 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) | 
						
							| 55 | 51 54 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐺 ‘  1  )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) | 
						
							| 56 | 50 55 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) | 
						
							| 57 | 21 19 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑌  ×  ( 𝐺 ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) ) | 
						
							| 58 | 1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 57 | hdmapinvlem4 | ⊢ ( 𝜑  →  ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) )  =  ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐷 ) ) | 
						
							| 59 | 56 58 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  =  ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  ( ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) | 
						
							| 61 | 8 9 | ringass | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑌 )  ∈  𝐵  ∧  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) )  ∈  𝐵 ) )  →  ( ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  ( 𝑋  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) | 
						
							| 62 | 24 25 29 39 61 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  ( 𝑋  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) ) ) | 
						
							| 63 | 43 | oveq2d | ⊢ ( 𝜑  →  ( 𝑋  ×  ( ( 𝐺 ‘ 𝑌 )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) ) )  =  ( 𝑋  ×   1  ) ) | 
						
							| 64 | 8 9 11 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ×   1  )  =  𝑋 ) | 
						
							| 65 | 24 25 64 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ×   1  )  =  𝑋 ) | 
						
							| 66 | 62 63 65 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑋  ×  ( 𝐺 ‘ 𝑌 ) )  ×  ( 𝑁 ‘ ( 𝐺 ‘ 𝑌 ) ) )  =  𝑋 ) | 
						
							| 67 | 47 60 66 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) |