| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem6.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem6.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem6.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem6.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem6.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | hdmapglem6.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 10 |  | hdmapglem6.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 11 |  | hdmapglem6.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 12 |  | hdmapglem6.n | ⊢ 𝑁  =  ( invr ‘ 𝑅 ) | 
						
							| 13 |  | hdmapglem6.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | hdmapglem6.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmapglem6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | hdmapglem6.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 17 |  | hdmapglem6.c | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 18 |  | hdmapglem6.d | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 19 |  | hdmapglem6.cd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 )  =   1  ) | 
						
							| 20 | 1 4 15 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 21 | 7 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑅  ∈  DivRing ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
						
							| 23 | 16 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 24 | 1 4 7 8 14 15 23 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 25 |  | eldifsni | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  {  0  } )  →  𝑋  ≠   0  ) | 
						
							| 26 | 16 25 | syl | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 27 | 1 4 7 8 10 14 15 23 | hgmapeq0 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =   0   ↔  𝑋  =   0  ) ) | 
						
							| 28 | 27 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  ≠   0   ↔  𝑋  ≠   0  ) ) | 
						
							| 29 | 26 28 | mpbird | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ≠   0  ) | 
						
							| 30 | 8 10 12 | drnginvrcl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠   0  )  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 31 | 22 24 29 30 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵 ) | 
						
							| 32 | 8 10 12 | drnginvrn0 | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠   0  )  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ≠   0  ) | 
						
							| 33 | 22 24 29 32 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ≠   0  ) | 
						
							| 34 |  | eldifsn | ⊢ ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  ( 𝐵  ∖  {  0  } )  ↔  ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  𝐵  ∧  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ≠   0  ) ) | 
						
							| 35 | 31 33 34 | sylanbrc | ⊢ ( 𝜑  →  ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 36 | 8 10 9 11 12 | drnginvrl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝐺 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑋 )  ≠   0  )  →  ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑋 ) )  =   1  ) | 
						
							| 37 | 22 24 29 36 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) )  ×  ( 𝐺 ‘ 𝑋 ) )  =   1  ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37 | hgmapvvlem1 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) |