Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapglem6.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapglem6.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapglem6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapglem6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapglem6.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hdmapglem6.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
8 |
|
hdmapglem6.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
9 |
|
hdmapglem6.t |
⊢ × = ( .r ‘ 𝑅 ) |
10 |
|
hdmapglem6.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
11 |
|
hdmapglem6.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
12 |
|
hdmapglem6.n |
⊢ 𝑁 = ( invr ‘ 𝑅 ) |
13 |
|
hdmapglem6.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmapglem6.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmapglem6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
hdmapglem6.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
17 |
|
hdmapglem6.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
18 |
|
hdmapglem6.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
19 |
|
hdmapglem6.cd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐷 ) ‘ 𝐶 ) = 1 ) |
20 |
1 4 15
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
21 |
7
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑅 ∈ DivRing ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
23 |
16
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
24 |
1 4 7 8 14 15 23
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ) |
25 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ≠ 0 ) |
26 |
16 25
|
syl |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
27 |
1 4 7 8 10 14 15 23
|
hgmapeq0 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |
28 |
27
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) ≠ 0 ↔ 𝑋 ≠ 0 ) ) |
29 |
26 28
|
mpbird |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) ≠ 0 ) |
30 |
8 10 12
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ) |
31 |
22 24 29 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ) |
32 |
8 10 12
|
drnginvrn0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ≠ 0 ) |
33 |
22 24 29 32
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ≠ 0 ) |
34 |
|
eldifsn |
⊢ ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ 𝐵 ∧ ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ≠ 0 ) ) |
35 |
31 33 34
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) ∈ ( 𝐵 ∖ { 0 } ) ) |
36 |
8 10 9 11 12
|
drnginvrl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝐺 ‘ 𝑋 ) ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑋 ) ≠ 0 ) → ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑋 ) ) = 1 ) |
37 |
22 24 29 36
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐺 ‘ 𝑋 ) ) × ( 𝐺 ‘ 𝑋 ) ) = 1 ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37
|
hgmapvvlem1 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |