Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem6.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapglem6.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapglem6.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapglem6.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapglem6.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapglem6.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hdmapglem6.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
8 |
|
hdmapglem6.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
9 |
|
hdmapglem6.t |
⊢ × = ( .r ‘ 𝑅 ) |
10 |
|
hdmapglem6.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
11 |
|
hdmapglem6.i |
⊢ 1 = ( 1r ‘ 𝑅 ) |
12 |
|
hdmapglem6.n |
⊢ 𝑁 = ( invr ‘ 𝑅 ) |
13 |
|
hdmapglem6.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
hdmapglem6.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hdmapglem6.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
16 |
|
hdmapglem6.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
1 18 19 4 5 17 2 15
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
21 |
20
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
22 |
1 3 4 5 17 15 21
|
dochsnnz |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ≠ { ( 0g ‘ 𝑈 ) } ) |
23 |
21
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
24 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
25 |
1 4 5 24 3
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
26 |
15 23 25
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
27 |
17 24
|
lssne0 |
⊢ ( ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) → ( ( 𝑂 ‘ { 𝐸 } ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ∃ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( 𝑂 ‘ { 𝐸 } ) ≠ { ( 0g ‘ 𝑈 ) } ↔ ∃ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ) |
29 |
22 28
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑘 ≠ ( 0g ‘ 𝑈 ) ) |
30 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
31 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
32 |
1 4 5 3
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
33 |
15 23 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ⊆ 𝑉 ) |
34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) → 𝑘 ∈ 𝑉 ) |
35 |
34
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → 𝑘 ∈ 𝑉 ) |
36 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → 𝑘 ≠ ( 0g ‘ 𝑈 ) ) |
37 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑘 ∈ 𝑉 ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ) |
38 |
35 36 37
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → 𝑘 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
39 |
|
eqid |
⊢ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) = ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) |
40 |
1 4 5 30 17 7 11 12 13 31 38 39
|
hdmapip1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) |
41 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝜑 ) |
42 |
41 15
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
43 |
41 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ) |
44 |
1 4 15
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
45 |
41 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝑈 ∈ LMod ) |
46 |
41 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
47 |
1 4 15
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
48 |
7
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝑅 ∈ DivRing ) |
49 |
47 48
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
50 |
41 49
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝑅 ∈ DivRing ) |
51 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝑘 ∈ 𝑉 ) |
52 |
1 4 5 7 8 13 42 51 51
|
hdmapipcl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ∈ 𝐵 ) |
53 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
54 |
1 4 5 17 7 10 13 53 34
|
hdmapip0 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) = 0 ↔ 𝑘 = ( 0g ‘ 𝑈 ) ) ) |
55 |
54
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ≠ 0 ↔ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ) |
56 |
55
|
biimp3ar |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ≠ 0 ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ≠ 0 ) |
58 |
8 10 12
|
drnginvrcl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ∈ 𝐵 ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ≠ 0 ) → ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ∈ 𝐵 ) |
59 |
50 52 57 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ∈ 𝐵 ) |
60 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
61 |
7 30 8 24
|
lssvscl |
⊢ ( ( ( 𝑈 ∈ LMod ∧ ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) ∧ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ∈ 𝐵 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ) ) → ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
62 |
45 46 59 60 61
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ∈ ( 𝑂 ‘ { 𝐸 } ) ) |
63 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) |
64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63
|
hgmapvvlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) ∧ ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) ( ·𝑠 ‘ 𝑈 ) 𝑘 ) ) = 1 ) → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |
65 |
40 64
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) ∧ 𝑘 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |
66 |
65
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑘 ≠ ( 0g ‘ 𝑈 ) → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) ) |
67 |
29 66
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) ) = 𝑋 ) |