| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem6.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem6.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem6.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem6.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem6.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem6.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem6.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem6.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | hdmapglem6.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 10 |  | hdmapglem6.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 11 |  | hdmapglem6.i | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 12 |  | hdmapglem6.n | ⊢ 𝑁  =  ( invr ‘ 𝑅 ) | 
						
							| 13 |  | hdmapglem6.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | hdmapglem6.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hdmapglem6.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 16 |  | hdmapglem6.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 19 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 | 1 18 19 4 5 17 2 15 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 21 | 20 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 22 | 1 3 4 5 17 15 21 | dochsnnz | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ≠  { ( 0g ‘ 𝑈 ) } ) | 
						
							| 23 | 21 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 24 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 25 | 1 4 5 24 3 | dochlss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 26 | 15 23 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 27 | 17 24 | lssne0 | ⊢ ( ( 𝑂 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 )  →  ( ( 𝑂 ‘ { 𝐸 } )  ≠  { ( 0g ‘ 𝑈 ) }  ↔  ∃ 𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) 𝑘  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ { 𝐸 } )  ≠  { ( 0g ‘ 𝑈 ) }  ↔  ∃ 𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) 𝑘  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 29 | 22 28 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) 𝑘  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 30 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 31 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 32 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 33 | 15 23 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 34 | 33 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) )  →  𝑘  ∈  𝑉 ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  𝑘  ∈  𝑉 ) | 
						
							| 36 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  𝑘  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 37 |  | eldifsn | ⊢ ( 𝑘  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } )  ↔  ( 𝑘  ∈  𝑉  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 38 | 35 36 37 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  𝑘  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 39 |  | eqid | ⊢ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 )  =  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) | 
						
							| 40 | 1 4 5 30 17 7 11 12 13 31 38 39 | hdmapip1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  ) | 
						
							| 41 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝜑 ) | 
						
							| 42 | 41 15 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 43 | 41 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝑋  ∈  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 44 | 1 4 15 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 45 | 41 44 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝑈  ∈  LMod ) | 
						
							| 46 | 41 26 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( 𝑂 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 47 | 1 4 15 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 48 | 7 | lvecdrng | ⊢ ( 𝑈  ∈  LVec  →  𝑅  ∈  DivRing ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝜑  →  𝑅  ∈  DivRing ) | 
						
							| 50 | 41 49 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝑅  ∈  DivRing ) | 
						
							| 51 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝑘  ∈  𝑉 ) | 
						
							| 52 | 1 4 5 7 8 13 42 51 51 | hdmapipcl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 53 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 54 | 1 4 5 17 7 10 13 53 34 | hdmapip0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) )  →  ( ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  =   0   ↔  𝑘  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 55 | 54 | necon3bid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) )  →  ( ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ≠   0   ↔  𝑘  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 56 | 55 | biimp3ar | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ≠   0  ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ≠   0  ) | 
						
							| 58 | 8 10 12 | drnginvrcl | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ∈  𝐵  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 )  ≠   0  )  →  ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) )  ∈  𝐵 ) | 
						
							| 59 | 50 52 57 58 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) )  ∈  𝐵 ) | 
						
							| 60 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 61 | 7 30 8 24 | lssvscl | ⊢ ( ( ( 𝑈  ∈  LMod  ∧  ( 𝑂 ‘ { 𝐸 } )  ∈  ( LSubSp ‘ 𝑈 ) )  ∧  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) )  ∈  𝐵  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) ) )  →  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 )  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 62 | 45 46 59 60 61 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 )  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  ) | 
						
							| 64 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63 | hgmapvvlem2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  ∧  ( ( 𝑆 ‘ 𝑘 ) ‘ ( ( 𝑁 ‘ ( ( 𝑆 ‘ 𝑘 ) ‘ 𝑘 ) ) (  ·𝑠  ‘ 𝑈 ) 𝑘 ) )  =   1  )  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 65 | 40 64 | mpdan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) | 
						
							| 66 | 65 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ( 𝑂 ‘ { 𝐸 } ) 𝑘  ≠  ( 0g ‘ 𝑈 )  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) ) | 
						
							| 67 | 29 66 | mpd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑋 ) )  =  𝑋 ) |