Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapglem6.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapglem6.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapglem6.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapglem6.v |
|- V = ( Base ` U ) |
6 |
|
hdmapglem6.q |
|- .x. = ( .s ` U ) |
7 |
|
hdmapglem6.r |
|- R = ( Scalar ` U ) |
8 |
|
hdmapglem6.b |
|- B = ( Base ` R ) |
9 |
|
hdmapglem6.t |
|- .X. = ( .r ` R ) |
10 |
|
hdmapglem6.z |
|- .0. = ( 0g ` R ) |
11 |
|
hdmapglem6.i |
|- .1. = ( 1r ` R ) |
12 |
|
hdmapglem6.n |
|- N = ( invr ` R ) |
13 |
|
hdmapglem6.s |
|- S = ( ( HDMap ` K ) ` W ) |
14 |
|
hdmapglem6.g |
|- G = ( ( HGMap ` K ) ` W ) |
15 |
|
hdmapglem6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
hdmapglem6.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
17 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
20 |
1 18 19 4 5 17 2 15
|
dvheveccl |
|- ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) |
21 |
20
|
eldifad |
|- ( ph -> E e. V ) |
22 |
1 3 4 5 17 15 21
|
dochsnnz |
|- ( ph -> ( O ` { E } ) =/= { ( 0g ` U ) } ) |
23 |
21
|
snssd |
|- ( ph -> { E } C_ V ) |
24 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
25 |
1 4 5 24 3
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) e. ( LSubSp ` U ) ) |
26 |
15 23 25
|
syl2anc |
|- ( ph -> ( O ` { E } ) e. ( LSubSp ` U ) ) |
27 |
17 24
|
lssne0 |
|- ( ( O ` { E } ) e. ( LSubSp ` U ) -> ( ( O ` { E } ) =/= { ( 0g ` U ) } <-> E. k e. ( O ` { E } ) k =/= ( 0g ` U ) ) ) |
28 |
26 27
|
syl |
|- ( ph -> ( ( O ` { E } ) =/= { ( 0g ` U ) } <-> E. k e. ( O ` { E } ) k =/= ( 0g ` U ) ) ) |
29 |
22 28
|
mpbid |
|- ( ph -> E. k e. ( O ` { E } ) k =/= ( 0g ` U ) ) |
30 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
31 |
15
|
3ad2ant1 |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
32 |
1 4 5 3
|
dochssv |
|- ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) |
33 |
15 23 32
|
syl2anc |
|- ( ph -> ( O ` { E } ) C_ V ) |
34 |
33
|
sselda |
|- ( ( ph /\ k e. ( O ` { E } ) ) -> k e. V ) |
35 |
34
|
3adant3 |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> k e. V ) |
36 |
|
simp3 |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> k =/= ( 0g ` U ) ) |
37 |
|
eldifsn |
|- ( k e. ( V \ { ( 0g ` U ) } ) <-> ( k e. V /\ k =/= ( 0g ` U ) ) ) |
38 |
35 36 37
|
sylanbrc |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> k e. ( V \ { ( 0g ` U ) } ) ) |
39 |
|
eqid |
|- ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) = ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) |
40 |
1 4 5 30 17 7 11 12 13 31 38 39
|
hdmapip1 |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) |
41 |
|
simpl1 |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ph ) |
42 |
41 15
|
syl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( K e. HL /\ W e. H ) ) |
43 |
41 16
|
syl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> X e. ( B \ { .0. } ) ) |
44 |
1 4 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
45 |
41 44
|
syl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> U e. LMod ) |
46 |
41 26
|
syl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( O ` { E } ) e. ( LSubSp ` U ) ) |
47 |
1 4 15
|
dvhlvec |
|- ( ph -> U e. LVec ) |
48 |
7
|
lvecdrng |
|- ( U e. LVec -> R e. DivRing ) |
49 |
47 48
|
syl |
|- ( ph -> R e. DivRing ) |
50 |
41 49
|
syl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> R e. DivRing ) |
51 |
35
|
adantr |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> k e. V ) |
52 |
1 4 5 7 8 13 42 51 51
|
hdmapipcl |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( ( S ` k ) ` k ) e. B ) |
53 |
15
|
adantr |
|- ( ( ph /\ k e. ( O ` { E } ) ) -> ( K e. HL /\ W e. H ) ) |
54 |
1 4 5 17 7 10 13 53 34
|
hdmapip0 |
|- ( ( ph /\ k e. ( O ` { E } ) ) -> ( ( ( S ` k ) ` k ) = .0. <-> k = ( 0g ` U ) ) ) |
55 |
54
|
necon3bid |
|- ( ( ph /\ k e. ( O ` { E } ) ) -> ( ( ( S ` k ) ` k ) =/= .0. <-> k =/= ( 0g ` U ) ) ) |
56 |
55
|
biimp3ar |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> ( ( S ` k ) ` k ) =/= .0. ) |
57 |
56
|
adantr |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( ( S ` k ) ` k ) =/= .0. ) |
58 |
8 10 12
|
drnginvrcl |
|- ( ( R e. DivRing /\ ( ( S ` k ) ` k ) e. B /\ ( ( S ` k ) ` k ) =/= .0. ) -> ( N ` ( ( S ` k ) ` k ) ) e. B ) |
59 |
50 52 57 58
|
syl3anc |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( N ` ( ( S ` k ) ` k ) ) e. B ) |
60 |
|
simpl2 |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> k e. ( O ` { E } ) ) |
61 |
7 30 8 24
|
lssvscl |
|- ( ( ( U e. LMod /\ ( O ` { E } ) e. ( LSubSp ` U ) ) /\ ( ( N ` ( ( S ` k ) ` k ) ) e. B /\ k e. ( O ` { E } ) ) ) -> ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) e. ( O ` { E } ) ) |
62 |
45 46 59 60 61
|
syl22anc |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) e. ( O ` { E } ) ) |
63 |
|
simpr |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) |
64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 42 43 62 60 63
|
hgmapvvlem2 |
|- ( ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) /\ ( ( S ` k ) ` ( ( N ` ( ( S ` k ) ` k ) ) ( .s ` U ) k ) ) = .1. ) -> ( G ` ( G ` X ) ) = X ) |
65 |
40 64
|
mpdan |
|- ( ( ph /\ k e. ( O ` { E } ) /\ k =/= ( 0g ` U ) ) -> ( G ` ( G ` X ) ) = X ) |
66 |
65
|
rexlimdv3a |
|- ( ph -> ( E. k e. ( O ` { E } ) k =/= ( 0g ` U ) -> ( G ` ( G ` X ) ) = X ) ) |
67 |
29 66
|
mpd |
|- ( ph -> ( G ` ( G ` X ) ) = X ) |