Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnnz.h |
|- H = ( LHyp ` K ) |
2 |
|
dochsnnz.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochsnnz.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochsnnz.v |
|- V = ( Base ` U ) |
5 |
|
dochsnnz.z |
|- .0. = ( 0g ` U ) |
6 |
|
dochsnnz.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dochsnnz.x |
|- ( ph -> X e. V ) |
8 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
9 |
1 3 2 4 8 6 7
|
dochocsn |
|- ( ph -> ( ._|_ ` ( ._|_ ` { X } ) ) = ( ( LSpan ` U ) ` { X } ) ) |
10 |
1 3 4 8 6 7
|
dvh2dim |
|- ( ph -> E. y e. V -. y e. ( ( LSpan ` U ) ` { X } ) ) |
11 |
|
eleq2 |
|- ( ( ( LSpan ` U ) ` { X } ) = V -> ( y e. ( ( LSpan ` U ) ` { X } ) <-> y e. V ) ) |
12 |
11
|
biimprcd |
|- ( y e. V -> ( ( ( LSpan ` U ) ` { X } ) = V -> y e. ( ( LSpan ` U ) ` { X } ) ) ) |
13 |
12
|
necon3bd |
|- ( y e. V -> ( -. y e. ( ( LSpan ` U ) ` { X } ) -> ( ( LSpan ` U ) ` { X } ) =/= V ) ) |
14 |
13
|
rexlimiv |
|- ( E. y e. V -. y e. ( ( LSpan ` U ) ` { X } ) -> ( ( LSpan ` U ) ` { X } ) =/= V ) |
15 |
10 14
|
syl |
|- ( ph -> ( ( LSpan ` U ) ` { X } ) =/= V ) |
16 |
9 15
|
eqnetrd |
|- ( ph -> ( ._|_ ` ( ._|_ ` { X } ) ) =/= V ) |
17 |
7
|
snssd |
|- ( ph -> { X } C_ V ) |
18 |
1 2 3 4 5 6 17
|
dochn0nv |
|- ( ph -> ( ( ._|_ ` { X } ) =/= { .0. } <-> ( ._|_ ` ( ._|_ ` { X } ) ) =/= V ) ) |
19 |
16 18
|
mpbird |
|- ( ph -> ( ._|_ ` { X } ) =/= { .0. } ) |