Metamath Proof Explorer


Theorem dochsnnz

Description: The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses dochsnnz.h H = LHyp K
dochsnnz.o ˙ = ocH K W
dochsnnz.u U = DVecH K W
dochsnnz.v V = Base U
dochsnnz.z 0 ˙ = 0 U
dochsnnz.k φ K HL W H
dochsnnz.x φ X V
Assertion dochsnnz φ ˙ X 0 ˙

Proof

Step Hyp Ref Expression
1 dochsnnz.h H = LHyp K
2 dochsnnz.o ˙ = ocH K W
3 dochsnnz.u U = DVecH K W
4 dochsnnz.v V = Base U
5 dochsnnz.z 0 ˙ = 0 U
6 dochsnnz.k φ K HL W H
7 dochsnnz.x φ X V
8 eqid LSpan U = LSpan U
9 1 3 2 4 8 6 7 dochocsn φ ˙ ˙ X = LSpan U X
10 1 3 4 8 6 7 dvh2dim φ y V ¬ y LSpan U X
11 eleq2 LSpan U X = V y LSpan U X y V
12 11 biimprcd y V LSpan U X = V y LSpan U X
13 12 necon3bd y V ¬ y LSpan U X LSpan U X V
14 13 rexlimiv y V ¬ y LSpan U X LSpan U X V
15 10 14 syl φ LSpan U X V
16 9 15 eqnetrd φ ˙ ˙ X V
17 7 snssd φ X V
18 1 2 3 4 5 6 17 dochn0nv φ ˙ X 0 ˙ ˙ ˙ X V
19 16 18 mpbird φ ˙ X 0 ˙