Metamath Proof Explorer


Theorem dochsnnz

Description: The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses dochsnnz.h H=LHypK
dochsnnz.o ˙=ocHKW
dochsnnz.u U=DVecHKW
dochsnnz.v V=BaseU
dochsnnz.z 0˙=0U
dochsnnz.k φKHLWH
dochsnnz.x φXV
Assertion dochsnnz φ˙X0˙

Proof

Step Hyp Ref Expression
1 dochsnnz.h H=LHypK
2 dochsnnz.o ˙=ocHKW
3 dochsnnz.u U=DVecHKW
4 dochsnnz.v V=BaseU
5 dochsnnz.z 0˙=0U
6 dochsnnz.k φKHLWH
7 dochsnnz.x φXV
8 eqid LSpanU=LSpanU
9 1 3 2 4 8 6 7 dochocsn φ˙˙X=LSpanUX
10 1 3 4 8 6 7 dvh2dim φyV¬yLSpanUX
11 eleq2 LSpanUX=VyLSpanUXyV
12 11 biimprcd yVLSpanUX=VyLSpanUX
13 12 necon3bd yV¬yLSpanUXLSpanUXV
14 13 rexlimiv yV¬yLSpanUXLSpanUXV
15 10 14 syl φLSpanUXV
16 9 15 eqnetrd φ˙˙XV
17 7 snssd φXV
18 1 2 3 4 5 6 17 dochn0nv φ˙X0˙˙˙XV
19 16 18 mpbird φ˙X0˙