Metamath Proof Explorer


Theorem dochsnnz

Description: The orthocomplement of a singleton is nonzero. (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses dochsnnz.h 𝐻 = ( LHyp ‘ 𝐾 )
dochsnnz.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochsnnz.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochsnnz.v 𝑉 = ( Base ‘ 𝑈 )
dochsnnz.z 0 = ( 0g𝑈 )
dochsnnz.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochsnnz.x ( 𝜑𝑋𝑉 )
Assertion dochsnnz ( 𝜑 → ( ‘ { 𝑋 } ) ≠ { 0 } )

Proof

Step Hyp Ref Expression
1 dochsnnz.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochsnnz.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochsnnz.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochsnnz.v 𝑉 = ( Base ‘ 𝑈 )
5 dochsnnz.z 0 = ( 0g𝑈 )
6 dochsnnz.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dochsnnz.x ( 𝜑𝑋𝑉 )
8 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
9 1 3 2 4 8 6 7 dochocsn ( 𝜑 → ( ‘ ( ‘ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )
10 1 3 4 8 6 7 dvh2dim ( 𝜑 → ∃ 𝑦𝑉 ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )
11 eleq2 ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = 𝑉 → ( 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ↔ 𝑦𝑉 ) )
12 11 biimprcd ( 𝑦𝑉 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = 𝑉𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) )
13 12 necon3bd ( 𝑦𝑉 → ( ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 ) )
14 13 rexlimiv ( ∃ 𝑦𝑉 ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 )
15 10 14 syl ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 )
16 9 15 eqnetrd ( 𝜑 → ( ‘ ( ‘ { 𝑋 } ) ) ≠ 𝑉 )
17 7 snssd ( 𝜑 → { 𝑋 } ⊆ 𝑉 )
18 1 2 3 4 5 6 17 dochn0nv ( 𝜑 → ( ( ‘ { 𝑋 } ) ≠ { 0 } ↔ ( ‘ ( ‘ { 𝑋 } ) ) ≠ 𝑉 ) )
19 16 18 mpbird ( 𝜑 → ( ‘ { 𝑋 } ) ≠ { 0 } )