Step |
Hyp |
Ref |
Expression |
1 |
|
dochsnnz.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochsnnz.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochsnnz.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochsnnz.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochsnnz.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dochsnnz.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
dochsnnz.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
9 |
1 3 2 4 8 6 7
|
dochocsn |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) = ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
10 |
1 3 4 8 6 7
|
dvh2dim |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝑉 ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) |
11 |
|
eleq2 |
⊢ ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = 𝑉 → ( 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ↔ 𝑦 ∈ 𝑉 ) ) |
12 |
11
|
biimprcd |
⊢ ( 𝑦 ∈ 𝑉 → ( ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) = 𝑉 → 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) ) |
13 |
12
|
necon3bd |
⊢ ( 𝑦 ∈ 𝑉 → ( ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 ) ) |
14 |
13
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝑉 ¬ 𝑦 ∈ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 ) |
15 |
10 14
|
syl |
⊢ ( 𝜑 → ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ≠ 𝑉 ) |
16 |
9 15
|
eqnetrd |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ≠ 𝑉 ) |
17 |
7
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
18 |
1 2 3 4 5 6 17
|
dochn0nv |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ≠ { 0 } ↔ ( ⊥ ‘ ( ⊥ ‘ { 𝑋 } ) ) ≠ 𝑉 ) ) |
19 |
16 18
|
mpbird |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ≠ { 0 } ) |