| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem6.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapglem6.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapglem6.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapglem6.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapglem6.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapglem6.q |  |-  .x. = ( .s ` U ) | 
						
							| 7 |  | hdmapglem6.r |  |-  R = ( Scalar ` U ) | 
						
							| 8 |  | hdmapglem6.b |  |-  B = ( Base ` R ) | 
						
							| 9 |  | hdmapglem6.t |  |-  .X. = ( .r ` R ) | 
						
							| 10 |  | hdmapglem6.z |  |-  .0. = ( 0g ` R ) | 
						
							| 11 |  | hdmapglem6.i |  |-  .1. = ( 1r ` R ) | 
						
							| 12 |  | hdmapglem6.n |  |-  N = ( invr ` R ) | 
						
							| 13 |  | hdmapglem6.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 14 |  | hdmapglem6.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 15 |  | hdmapglem6.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 16 |  | hdmapglem6.x |  |-  ( ph -> X e. ( B \ { .0. } ) ) | 
						
							| 17 |  | hdmapglem6.c |  |-  ( ph -> C e. ( O ` { E } ) ) | 
						
							| 18 |  | hdmapglem6.d |  |-  ( ph -> D e. ( O ` { E } ) ) | 
						
							| 19 |  | hdmapglem6.cd |  |-  ( ph -> ( ( S ` D ) ` C ) = .1. ) | 
						
							| 20 | 1 4 15 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 21 | 7 | lvecdrng |  |-  ( U e. LVec -> R e. DivRing ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> R e. DivRing ) | 
						
							| 23 | 16 | eldifad |  |-  ( ph -> X e. B ) | 
						
							| 24 | 1 4 7 8 14 15 23 | hgmapcl |  |-  ( ph -> ( G ` X ) e. B ) | 
						
							| 25 |  | eldifsni |  |-  ( X e. ( B \ { .0. } ) -> X =/= .0. ) | 
						
							| 26 | 16 25 | syl |  |-  ( ph -> X =/= .0. ) | 
						
							| 27 | 1 4 7 8 10 14 15 23 | hgmapeq0 |  |-  ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) ) | 
						
							| 28 | 27 | necon3bid |  |-  ( ph -> ( ( G ` X ) =/= .0. <-> X =/= .0. ) ) | 
						
							| 29 | 26 28 | mpbird |  |-  ( ph -> ( G ` X ) =/= .0. ) | 
						
							| 30 | 8 10 12 | drnginvrcl |  |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) e. B ) | 
						
							| 31 | 22 24 29 30 | syl3anc |  |-  ( ph -> ( N ` ( G ` X ) ) e. B ) | 
						
							| 32 | 8 10 12 | drnginvrn0 |  |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) =/= .0. ) | 
						
							| 33 | 22 24 29 32 | syl3anc |  |-  ( ph -> ( N ` ( G ` X ) ) =/= .0. ) | 
						
							| 34 |  | eldifsn |  |-  ( ( N ` ( G ` X ) ) e. ( B \ { .0. } ) <-> ( ( N ` ( G ` X ) ) e. B /\ ( N ` ( G ` X ) ) =/= .0. ) ) | 
						
							| 35 | 31 33 34 | sylanbrc |  |-  ( ph -> ( N ` ( G ` X ) ) e. ( B \ { .0. } ) ) | 
						
							| 36 | 8 10 9 11 12 | drnginvrl |  |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. ) | 
						
							| 37 | 22 24 29 36 | syl3anc |  |-  ( ph -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37 | hgmapvvlem1 |  |-  ( ph -> ( G ` ( G ` X ) ) = X ) |