Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapglem6.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapglem6.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapglem6.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapglem6.v |
|- V = ( Base ` U ) |
6 |
|
hdmapglem6.q |
|- .x. = ( .s ` U ) |
7 |
|
hdmapglem6.r |
|- R = ( Scalar ` U ) |
8 |
|
hdmapglem6.b |
|- B = ( Base ` R ) |
9 |
|
hdmapglem6.t |
|- .X. = ( .r ` R ) |
10 |
|
hdmapglem6.z |
|- .0. = ( 0g ` R ) |
11 |
|
hdmapglem6.i |
|- .1. = ( 1r ` R ) |
12 |
|
hdmapglem6.n |
|- N = ( invr ` R ) |
13 |
|
hdmapglem6.s |
|- S = ( ( HDMap ` K ) ` W ) |
14 |
|
hdmapglem6.g |
|- G = ( ( HGMap ` K ) ` W ) |
15 |
|
hdmapglem6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
hdmapglem6.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
17 |
|
hdmapglem6.c |
|- ( ph -> C e. ( O ` { E } ) ) |
18 |
|
hdmapglem6.d |
|- ( ph -> D e. ( O ` { E } ) ) |
19 |
|
hdmapglem6.cd |
|- ( ph -> ( ( S ` D ) ` C ) = .1. ) |
20 |
1 4 15
|
dvhlvec |
|- ( ph -> U e. LVec ) |
21 |
7
|
lvecdrng |
|- ( U e. LVec -> R e. DivRing ) |
22 |
20 21
|
syl |
|- ( ph -> R e. DivRing ) |
23 |
16
|
eldifad |
|- ( ph -> X e. B ) |
24 |
1 4 7 8 14 15 23
|
hgmapcl |
|- ( ph -> ( G ` X ) e. B ) |
25 |
|
eldifsni |
|- ( X e. ( B \ { .0. } ) -> X =/= .0. ) |
26 |
16 25
|
syl |
|- ( ph -> X =/= .0. ) |
27 |
1 4 7 8 10 14 15 23
|
hgmapeq0 |
|- ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) ) |
28 |
27
|
necon3bid |
|- ( ph -> ( ( G ` X ) =/= .0. <-> X =/= .0. ) ) |
29 |
26 28
|
mpbird |
|- ( ph -> ( G ` X ) =/= .0. ) |
30 |
8 10 12
|
drnginvrcl |
|- ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) e. B ) |
31 |
22 24 29 30
|
syl3anc |
|- ( ph -> ( N ` ( G ` X ) ) e. B ) |
32 |
8 10 12
|
drnginvrn0 |
|- ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) =/= .0. ) |
33 |
22 24 29 32
|
syl3anc |
|- ( ph -> ( N ` ( G ` X ) ) =/= .0. ) |
34 |
|
eldifsn |
|- ( ( N ` ( G ` X ) ) e. ( B \ { .0. } ) <-> ( ( N ` ( G ` X ) ) e. B /\ ( N ` ( G ` X ) ) =/= .0. ) ) |
35 |
31 33 34
|
sylanbrc |
|- ( ph -> ( N ` ( G ` X ) ) e. ( B \ { .0. } ) ) |
36 |
8 10 9 11 12
|
drnginvrl |
|- ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. ) |
37 |
22 24 29 36
|
syl3anc |
|- ( ph -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37
|
hgmapvvlem1 |
|- ( ph -> ( G ` ( G ` X ) ) = X ) |