Metamath Proof Explorer


Theorem hgmapvvlem2

Description: Lemma for hgmapvv . Eliminate Y (Baer's s). (Contributed by NM, 13-Jun-2015)

Ref Expression
Hypotheses hdmapglem6.h
|- H = ( LHyp ` K )
hdmapglem6.e
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
hdmapglem6.o
|- O = ( ( ocH ` K ) ` W )
hdmapglem6.u
|- U = ( ( DVecH ` K ) ` W )
hdmapglem6.v
|- V = ( Base ` U )
hdmapglem6.q
|- .x. = ( .s ` U )
hdmapglem6.r
|- R = ( Scalar ` U )
hdmapglem6.b
|- B = ( Base ` R )
hdmapglem6.t
|- .X. = ( .r ` R )
hdmapglem6.z
|- .0. = ( 0g ` R )
hdmapglem6.i
|- .1. = ( 1r ` R )
hdmapglem6.n
|- N = ( invr ` R )
hdmapglem6.s
|- S = ( ( HDMap ` K ) ` W )
hdmapglem6.g
|- G = ( ( HGMap ` K ) ` W )
hdmapglem6.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapglem6.x
|- ( ph -> X e. ( B \ { .0. } ) )
hdmapglem6.c
|- ( ph -> C e. ( O ` { E } ) )
hdmapglem6.d
|- ( ph -> D e. ( O ` { E } ) )
hdmapglem6.cd
|- ( ph -> ( ( S ` D ) ` C ) = .1. )
Assertion hgmapvvlem2
|- ( ph -> ( G ` ( G ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 hdmapglem6.h
 |-  H = ( LHyp ` K )
2 hdmapglem6.e
 |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
3 hdmapglem6.o
 |-  O = ( ( ocH ` K ) ` W )
4 hdmapglem6.u
 |-  U = ( ( DVecH ` K ) ` W )
5 hdmapglem6.v
 |-  V = ( Base ` U )
6 hdmapglem6.q
 |-  .x. = ( .s ` U )
7 hdmapglem6.r
 |-  R = ( Scalar ` U )
8 hdmapglem6.b
 |-  B = ( Base ` R )
9 hdmapglem6.t
 |-  .X. = ( .r ` R )
10 hdmapglem6.z
 |-  .0. = ( 0g ` R )
11 hdmapglem6.i
 |-  .1. = ( 1r ` R )
12 hdmapglem6.n
 |-  N = ( invr ` R )
13 hdmapglem6.s
 |-  S = ( ( HDMap ` K ) ` W )
14 hdmapglem6.g
 |-  G = ( ( HGMap ` K ) ` W )
15 hdmapglem6.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
16 hdmapglem6.x
 |-  ( ph -> X e. ( B \ { .0. } ) )
17 hdmapglem6.c
 |-  ( ph -> C e. ( O ` { E } ) )
18 hdmapglem6.d
 |-  ( ph -> D e. ( O ` { E } ) )
19 hdmapglem6.cd
 |-  ( ph -> ( ( S ` D ) ` C ) = .1. )
20 1 4 15 dvhlvec
 |-  ( ph -> U e. LVec )
21 7 lvecdrng
 |-  ( U e. LVec -> R e. DivRing )
22 20 21 syl
 |-  ( ph -> R e. DivRing )
23 16 eldifad
 |-  ( ph -> X e. B )
24 1 4 7 8 14 15 23 hgmapcl
 |-  ( ph -> ( G ` X ) e. B )
25 eldifsni
 |-  ( X e. ( B \ { .0. } ) -> X =/= .0. )
26 16 25 syl
 |-  ( ph -> X =/= .0. )
27 1 4 7 8 10 14 15 23 hgmapeq0
 |-  ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) )
28 27 necon3bid
 |-  ( ph -> ( ( G ` X ) =/= .0. <-> X =/= .0. ) )
29 26 28 mpbird
 |-  ( ph -> ( G ` X ) =/= .0. )
30 8 10 12 drnginvrcl
 |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) e. B )
31 22 24 29 30 syl3anc
 |-  ( ph -> ( N ` ( G ` X ) ) e. B )
32 8 10 12 drnginvrn0
 |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( N ` ( G ` X ) ) =/= .0. )
33 22 24 29 32 syl3anc
 |-  ( ph -> ( N ` ( G ` X ) ) =/= .0. )
34 eldifsn
 |-  ( ( N ` ( G ` X ) ) e. ( B \ { .0. } ) <-> ( ( N ` ( G ` X ) ) e. B /\ ( N ` ( G ` X ) ) =/= .0. ) )
35 31 33 34 sylanbrc
 |-  ( ph -> ( N ` ( G ` X ) ) e. ( B \ { .0. } ) )
36 8 10 9 11 12 drnginvrl
 |-  ( ( R e. DivRing /\ ( G ` X ) e. B /\ ( G ` X ) =/= .0. ) -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. )
37 22 24 29 36 syl3anc
 |-  ( ph -> ( ( N ` ( G ` X ) ) .X. ( G ` X ) ) = .1. )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 35 37 hgmapvvlem1
 |-  ( ph -> ( G ` ( G ` X ) ) = X )