Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem6.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapglem6.e |
|- E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
3 |
|
hdmapglem6.o |
|- O = ( ( ocH ` K ) ` W ) |
4 |
|
hdmapglem6.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
hdmapglem6.v |
|- V = ( Base ` U ) |
6 |
|
hdmapglem6.q |
|- .x. = ( .s ` U ) |
7 |
|
hdmapglem6.r |
|- R = ( Scalar ` U ) |
8 |
|
hdmapglem6.b |
|- B = ( Base ` R ) |
9 |
|
hdmapglem6.t |
|- .X. = ( .r ` R ) |
10 |
|
hdmapglem6.z |
|- .0. = ( 0g ` R ) |
11 |
|
hdmapglem6.i |
|- .1. = ( 1r ` R ) |
12 |
|
hdmapglem6.n |
|- N = ( invr ` R ) |
13 |
|
hdmapglem6.s |
|- S = ( ( HDMap ` K ) ` W ) |
14 |
|
hdmapglem6.g |
|- G = ( ( HGMap ` K ) ` W ) |
15 |
|
hdmapglem6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
16 |
|
hdmapglem6.x |
|- ( ph -> X e. ( B \ { .0. } ) ) |
17 |
|
hdmapglem6.c |
|- ( ph -> C e. ( O ` { E } ) ) |
18 |
|
hdmapglem6.d |
|- ( ph -> D e. ( O ` { E } ) ) |
19 |
|
hdmapglem6.cd |
|- ( ph -> ( ( S ` D ) ` C ) = .1. ) |
20 |
|
hdmapglem6.y |
|- ( ph -> Y e. ( B \ { .0. } ) ) |
21 |
|
hdmapglem6.yx |
|- ( ph -> ( Y .X. ( G ` X ) ) = .1. ) |
22 |
1 4 15
|
dvhlmod |
|- ( ph -> U e. LMod ) |
23 |
7
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
24 |
22 23
|
syl |
|- ( ph -> R e. Ring ) |
25 |
16
|
eldifad |
|- ( ph -> X e. B ) |
26 |
1 4 7 8 14 15 25
|
hgmapcl |
|- ( ph -> ( G ` X ) e. B ) |
27 |
1 4 7 8 14 15 26
|
hgmapcl |
|- ( ph -> ( G ` ( G ` X ) ) e. B ) |
28 |
20
|
eldifad |
|- ( ph -> Y e. B ) |
29 |
1 4 7 8 14 15 28
|
hgmapcl |
|- ( ph -> ( G ` Y ) e. B ) |
30 |
1 4 15
|
dvhlvec |
|- ( ph -> U e. LVec ) |
31 |
7
|
lvecdrng |
|- ( U e. LVec -> R e. DivRing ) |
32 |
30 31
|
syl |
|- ( ph -> R e. DivRing ) |
33 |
|
eldifsni |
|- ( Y e. ( B \ { .0. } ) -> Y =/= .0. ) |
34 |
20 33
|
syl |
|- ( ph -> Y =/= .0. ) |
35 |
1 4 7 8 10 14 15 28
|
hgmapeq0 |
|- ( ph -> ( ( G ` Y ) = .0. <-> Y = .0. ) ) |
36 |
35
|
necon3bid |
|- ( ph -> ( ( G ` Y ) =/= .0. <-> Y =/= .0. ) ) |
37 |
34 36
|
mpbird |
|- ( ph -> ( G ` Y ) =/= .0. ) |
38 |
8 10 12
|
drnginvrcl |
|- ( ( R e. DivRing /\ ( G ` Y ) e. B /\ ( G ` Y ) =/= .0. ) -> ( N ` ( G ` Y ) ) e. B ) |
39 |
32 29 37 38
|
syl3anc |
|- ( ph -> ( N ` ( G ` Y ) ) e. B ) |
40 |
8 9
|
ringass |
|- ( ( R e. Ring /\ ( ( G ` ( G ` X ) ) e. B /\ ( G ` Y ) e. B /\ ( N ` ( G ` Y ) ) e. B ) ) -> ( ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = ( ( G ` ( G ` X ) ) .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) ) |
41 |
24 27 29 39 40
|
syl13anc |
|- ( ph -> ( ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = ( ( G ` ( G ` X ) ) .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) ) |
42 |
8 10 9 11 12
|
drnginvrr |
|- ( ( R e. DivRing /\ ( G ` Y ) e. B /\ ( G ` Y ) =/= .0. ) -> ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) = .1. ) |
43 |
32 29 37 42
|
syl3anc |
|- ( ph -> ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) = .1. ) |
44 |
43
|
oveq2d |
|- ( ph -> ( ( G ` ( G ` X ) ) .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) = ( ( G ` ( G ` X ) ) .X. .1. ) ) |
45 |
8 9 11
|
ringridm |
|- ( ( R e. Ring /\ ( G ` ( G ` X ) ) e. B ) -> ( ( G ` ( G ` X ) ) .X. .1. ) = ( G ` ( G ` X ) ) ) |
46 |
24 27 45
|
syl2anc |
|- ( ph -> ( ( G ` ( G ` X ) ) .X. .1. ) = ( G ` ( G ` X ) ) ) |
47 |
41 44 46
|
3eqtrrd |
|- ( ph -> ( G ` ( G ` X ) ) = ( ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) ) |
48 |
21
|
fveq2d |
|- ( ph -> ( G ` ( Y .X. ( G ` X ) ) ) = ( G ` .1. ) ) |
49 |
1 4 7 8 9 14 15 28 26
|
hgmapmul |
|- ( ph -> ( G ` ( Y .X. ( G ` X ) ) ) = ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) ) |
50 |
48 49
|
eqtr3d |
|- ( ph -> ( G ` .1. ) = ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) ) |
51 |
19
|
fveq2d |
|- ( ph -> ( G ` ( ( S ` D ) ` C ) ) = ( G ` .1. ) ) |
52 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
53 |
|
eqid |
|- ( -g ` U ) = ( -g ` U ) |
54 |
1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25
|
hdmapglem5 |
|- ( ph -> ( G ` ( ( S ` D ) ` C ) ) = ( ( S ` C ) ` D ) ) |
55 |
51 54
|
eqtr3d |
|- ( ph -> ( G ` .1. ) = ( ( S ` C ) ` D ) ) |
56 |
50 55
|
eqtr3d |
|- ( ph -> ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) = ( ( S ` C ) ` D ) ) |
57 |
21 19
|
eqtr4d |
|- ( ph -> ( Y .X. ( G ` X ) ) = ( ( S ` D ) ` C ) ) |
58 |
1 2 3 4 5 52 53 6 7 8 9 10 13 14 15 17 18 28 25 57
|
hdmapinvlem4 |
|- ( ph -> ( X .X. ( G ` Y ) ) = ( ( S ` C ) ` D ) ) |
59 |
56 58
|
eqtr4d |
|- ( ph -> ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) = ( X .X. ( G ` Y ) ) ) |
60 |
59
|
oveq1d |
|- ( ph -> ( ( ( G ` ( G ` X ) ) .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = ( ( X .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) ) |
61 |
8 9
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ ( G ` Y ) e. B /\ ( N ` ( G ` Y ) ) e. B ) ) -> ( ( X .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = ( X .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) ) |
62 |
24 25 29 39 61
|
syl13anc |
|- ( ph -> ( ( X .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = ( X .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) ) |
63 |
43
|
oveq2d |
|- ( ph -> ( X .X. ( ( G ` Y ) .X. ( N ` ( G ` Y ) ) ) ) = ( X .X. .1. ) ) |
64 |
8 9 11
|
ringridm |
|- ( ( R e. Ring /\ X e. B ) -> ( X .X. .1. ) = X ) |
65 |
24 25 64
|
syl2anc |
|- ( ph -> ( X .X. .1. ) = X ) |
66 |
62 63 65
|
3eqtrd |
|- ( ph -> ( ( X .X. ( G ` Y ) ) .X. ( N ` ( G ` Y ) ) ) = X ) |
67 |
47 60 66
|
3eqtrd |
|- ( ph -> ( G ` ( G ` X ) ) = X ) |