Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapvv.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapvv.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapvv.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapvv.b |
|- B = ( Base ` R ) |
5 |
|
hgmapvv.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmapvv.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
hgmapvv.j |
|- ( ph -> X e. B ) |
8 |
|
2fveq3 |
|- ( X = ( 0g ` R ) -> ( G ` ( G ` X ) ) = ( G ` ( G ` ( 0g ` R ) ) ) ) |
9 |
|
id |
|- ( X = ( 0g ` R ) -> X = ( 0g ` R ) ) |
10 |
8 9
|
eqeq12d |
|- ( X = ( 0g ` R ) -> ( ( G ` ( G ` X ) ) = X <-> ( G ` ( G ` ( 0g ` R ) ) ) = ( 0g ` R ) ) ) |
11 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
12 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
13 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
14 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
15 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
18 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
19 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
20 |
6
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
7
|
anim1i |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( X e. B /\ X =/= ( 0g ` R ) ) ) |
22 |
|
eldifsn |
|- ( X e. ( B \ { ( 0g ` R ) } ) <-> ( X e. B /\ X =/= ( 0g ` R ) ) ) |
23 |
21 22
|
sylibr |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> X e. ( B \ { ( 0g ` R ) } ) ) |
24 |
1 11 12 2 13 14 3 4 15 16 17 18 19 5 20 23
|
hgmapvvlem3 |
|- ( ( ph /\ X =/= ( 0g ` R ) ) -> ( G ` ( G ` X ) ) = X ) |
25 |
1 2 3 16 5 6
|
hgmapval0 |
|- ( ph -> ( G ` ( 0g ` R ) ) = ( 0g ` R ) ) |
26 |
25
|
fveq2d |
|- ( ph -> ( G ` ( G ` ( 0g ` R ) ) ) = ( G ` ( 0g ` R ) ) ) |
27 |
26 25
|
eqtrd |
|- ( ph -> ( G ` ( G ` ( 0g ` R ) ) ) = ( 0g ` R ) ) |
28 |
10 24 27
|
pm2.61ne |
|- ( ph -> ( G ` ( G ` X ) ) = X ) |