| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem7.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapglem7.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapglem7.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapglem7.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapglem7.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapglem7.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | hdmapglem7.q |  |-  .x. = ( .s ` U ) | 
						
							| 8 |  | hdmapglem7.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmapglem7.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmapglem7.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 11 |  | hdmapglem7.n |  |-  N = ( LSpan ` U ) | 
						
							| 12 |  | hdmapglem7.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | hdmapglem7.x |  |-  ( ph -> X e. V ) | 
						
							| 14 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 15 | 1 4 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 18 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 19 | 1 16 17 4 5 18 2 12 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 20 | 19 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 21 | 5 14 11 | lspsncl |  |-  ( ( U e. LMod /\ E e. V ) -> ( N ` { E } ) e. ( LSubSp ` U ) ) | 
						
							| 22 | 15 20 21 | syl2anc |  |-  ( ph -> ( N ` { E } ) e. ( LSubSp ` U ) ) | 
						
							| 23 | 20 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 24 | 1 4 3 5 11 12 23 | dochocsp |  |-  ( ph -> ( O ` ( N ` { E } ) ) = ( O ` { E } ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ph -> ( O ` ( O ` ( N ` { E } ) ) ) = ( O ` ( O ` { E } ) ) ) | 
						
							| 26 | 1 4 3 5 11 12 20 | dochocsn |  |-  ( ph -> ( O ` ( O ` { E } ) ) = ( N ` { E } ) ) | 
						
							| 27 | 25 26 | eqtrd |  |-  ( ph -> ( O ` ( O ` ( N ` { E } ) ) ) = ( N ` { E } ) ) | 
						
							| 28 | 1 3 4 5 14 10 12 22 27 | dochexmid |  |-  ( ph -> ( ( N ` { E } ) .(+) ( O ` ( N ` { E } ) ) ) = V ) | 
						
							| 29 | 24 | oveq2d |  |-  ( ph -> ( ( N ` { E } ) .(+) ( O ` ( N ` { E } ) ) ) = ( ( N ` { E } ) .(+) ( O ` { E } ) ) ) | 
						
							| 30 | 28 29 | eqtr3d |  |-  ( ph -> V = ( ( N ` { E } ) .(+) ( O ` { E } ) ) ) | 
						
							| 31 | 13 30 | eleqtrd |  |-  ( ph -> X e. ( ( N ` { E } ) .(+) ( O ` { E } ) ) ) | 
						
							| 32 | 14 | lsssssubg |  |-  ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 33 | 15 32 | syl |  |-  ( ph -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) | 
						
							| 34 | 33 22 | sseldd |  |-  ( ph -> ( N ` { E } ) e. ( SubGrp ` U ) ) | 
						
							| 35 | 1 4 5 14 3 | dochlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) e. ( LSubSp ` U ) ) | 
						
							| 36 | 12 23 35 | syl2anc |  |-  ( ph -> ( O ` { E } ) e. ( LSubSp ` U ) ) | 
						
							| 37 | 33 36 | sseldd |  |-  ( ph -> ( O ` { E } ) e. ( SubGrp ` U ) ) | 
						
							| 38 | 6 10 | lsmelval |  |-  ( ( ( N ` { E } ) e. ( SubGrp ` U ) /\ ( O ` { E } ) e. ( SubGrp ` U ) ) -> ( X e. ( ( N ` { E } ) .(+) ( O ` { E } ) ) <-> E. a e. ( N ` { E } ) E. u e. ( O ` { E } ) X = ( a .+ u ) ) ) | 
						
							| 39 | 34 37 38 | syl2anc |  |-  ( ph -> ( X e. ( ( N ` { E } ) .(+) ( O ` { E } ) ) <-> E. a e. ( N ` { E } ) E. u e. ( O ` { E } ) X = ( a .+ u ) ) ) | 
						
							| 40 | 31 39 | mpbid |  |-  ( ph -> E. a e. ( N ` { E } ) E. u e. ( O ` { E } ) X = ( a .+ u ) ) | 
						
							| 41 |  | rexcom |  |-  ( E. a e. ( N ` { E } ) E. u e. ( O ` { E } ) X = ( a .+ u ) <-> E. u e. ( O ` { E } ) E. a e. ( N ` { E } ) X = ( a .+ u ) ) | 
						
							| 42 |  | df-rex |  |-  ( E. a e. ( N ` { E } ) X = ( a .+ u ) <-> E. a ( a e. ( N ` { E } ) /\ X = ( a .+ u ) ) ) | 
						
							| 43 | 8 9 5 7 11 | ellspsn |  |-  ( ( U e. LMod /\ E e. V ) -> ( a e. ( N ` { E } ) <-> E. k e. B a = ( k .x. E ) ) ) | 
						
							| 44 | 15 20 43 | syl2anc |  |-  ( ph -> ( a e. ( N ` { E } ) <-> E. k e. B a = ( k .x. E ) ) ) | 
						
							| 45 | 44 | anbi1d |  |-  ( ph -> ( ( a e. ( N ` { E } ) /\ X = ( a .+ u ) ) <-> ( E. k e. B a = ( k .x. E ) /\ X = ( a .+ u ) ) ) ) | 
						
							| 46 |  | r19.41v |  |-  ( E. k e. B ( a = ( k .x. E ) /\ X = ( a .+ u ) ) <-> ( E. k e. B a = ( k .x. E ) /\ X = ( a .+ u ) ) ) | 
						
							| 47 | 45 46 | bitr4di |  |-  ( ph -> ( ( a e. ( N ` { E } ) /\ X = ( a .+ u ) ) <-> E. k e. B ( a = ( k .x. E ) /\ X = ( a .+ u ) ) ) ) | 
						
							| 48 | 47 | exbidv |  |-  ( ph -> ( E. a ( a e. ( N ` { E } ) /\ X = ( a .+ u ) ) <-> E. a E. k e. B ( a = ( k .x. E ) /\ X = ( a .+ u ) ) ) ) | 
						
							| 49 |  | rexcom4 |  |-  ( E. k e. B E. a ( a = ( k .x. E ) /\ X = ( a .+ u ) ) <-> E. a E. k e. B ( a = ( k .x. E ) /\ X = ( a .+ u ) ) ) | 
						
							| 50 |  | ovex |  |-  ( k .x. E ) e. _V | 
						
							| 51 |  | oveq1 |  |-  ( a = ( k .x. E ) -> ( a .+ u ) = ( ( k .x. E ) .+ u ) ) | 
						
							| 52 | 51 | eqeq2d |  |-  ( a = ( k .x. E ) -> ( X = ( a .+ u ) <-> X = ( ( k .x. E ) .+ u ) ) ) | 
						
							| 53 | 50 52 | ceqsexv |  |-  ( E. a ( a = ( k .x. E ) /\ X = ( a .+ u ) ) <-> X = ( ( k .x. E ) .+ u ) ) | 
						
							| 54 | 53 | rexbii |  |-  ( E. k e. B E. a ( a = ( k .x. E ) /\ X = ( a .+ u ) ) <-> E. k e. B X = ( ( k .x. E ) .+ u ) ) | 
						
							| 55 | 49 54 | bitr3i |  |-  ( E. a E. k e. B ( a = ( k .x. E ) /\ X = ( a .+ u ) ) <-> E. k e. B X = ( ( k .x. E ) .+ u ) ) | 
						
							| 56 | 48 55 | bitrdi |  |-  ( ph -> ( E. a ( a e. ( N ` { E } ) /\ X = ( a .+ u ) ) <-> E. k e. B X = ( ( k .x. E ) .+ u ) ) ) | 
						
							| 57 | 42 56 | bitrid |  |-  ( ph -> ( E. a e. ( N ` { E } ) X = ( a .+ u ) <-> E. k e. B X = ( ( k .x. E ) .+ u ) ) ) | 
						
							| 58 | 57 | rexbidv |  |-  ( ph -> ( E. u e. ( O ` { E } ) E. a e. ( N ` { E } ) X = ( a .+ u ) <-> E. u e. ( O ` { E } ) E. k e. B X = ( ( k .x. E ) .+ u ) ) ) | 
						
							| 59 | 41 58 | bitrid |  |-  ( ph -> ( E. a e. ( N ` { E } ) E. u e. ( O ` { E } ) X = ( a .+ u ) <-> E. u e. ( O ` { E } ) E. k e. B X = ( ( k .x. E ) .+ u ) ) ) | 
						
							| 60 | 40 59 | mpbid |  |-  ( ph -> E. u e. ( O ` { E } ) E. k e. B X = ( ( k .x. E ) .+ u ) ) |