Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglem7.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapglem7.e |
⊢ 𝐸 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
3 |
|
hdmapglem7.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapglem7.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapglem7.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
hdmapglem7.p |
⊢ + = ( +g ‘ 𝑈 ) |
7 |
|
hdmapglem7.q |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
8 |
|
hdmapglem7.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
9 |
|
hdmapglem7.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
10 |
|
hdmapglem7.a |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
11 |
|
hdmapglem7.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
12 |
|
hdmapglem7.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
hdmapglem7.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
15 |
1 4 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
19 |
1 16 17 4 5 18 2 12
|
dvheveccl |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
20 |
19
|
eldifad |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
21 |
5 14 11
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
22 |
15 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
23 |
20
|
snssd |
⊢ ( 𝜑 → { 𝐸 } ⊆ 𝑉 ) |
24 |
1 4 3 5 11 12 23
|
dochocsp |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ‘ { 𝐸 } ) ) = ( 𝑂 ‘ { 𝐸 } ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑁 ‘ { 𝐸 } ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ { 𝐸 } ) ) ) |
26 |
1 4 3 5 11 12 20
|
dochocsn |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑂 ‘ { 𝐸 } ) ) = ( 𝑁 ‘ { 𝐸 } ) ) |
27 |
25 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑁 ‘ { 𝐸 } ) ) ) = ( 𝑁 ‘ { 𝐸 } ) ) |
28 |
1 3 4 5 14 10 12 22 27
|
dochexmid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ ( 𝑁 ‘ { 𝐸 } ) ) ) = 𝑉 ) |
29 |
24
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ ( 𝑁 ‘ { 𝐸 } ) ) ) = ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ { 𝐸 } ) ) ) |
30 |
28 29
|
eqtr3d |
⊢ ( 𝜑 → 𝑉 = ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ { 𝐸 } ) ) ) |
31 |
13 30
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ { 𝐸 } ) ) ) |
32 |
14
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
33 |
15 32
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
34 |
33 22
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐸 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
35 |
1 4 5 14 3
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { 𝐸 } ⊆ 𝑉 ) → ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
36 |
12 23 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
37 |
33 36
|
sseldd |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝐸 } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
38 |
6 10
|
lsmelval |
⊢ ( ( ( 𝑁 ‘ { 𝐸 } ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑂 ‘ { 𝐸 } ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ { 𝐸 } ) ) ↔ ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ) ) |
39 |
34 37 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝐸 } ) ⊕ ( 𝑂 ‘ { 𝐸 } ) ) ↔ ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ) ) |
40 |
31 39
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ) |
41 |
|
rexcom |
⊢ ( ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ) |
42 |
|
df-rex |
⊢ ( ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ↔ ∃ 𝑎 ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) |
43 |
8 9 5 7 11
|
lspsnel |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉 ) → ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ↔ ∃ 𝑘 ∈ 𝐵 𝑎 = ( 𝑘 · 𝐸 ) ) ) |
44 |
15 20 43
|
syl2anc |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ↔ ∃ 𝑘 ∈ 𝐵 𝑎 = ( 𝑘 · 𝐸 ) ) ) |
45 |
44
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ( ∃ 𝑘 ∈ 𝐵 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) ) |
46 |
|
r19.41v |
⊢ ( ∃ 𝑘 ∈ 𝐵 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ( ∃ 𝑘 ∈ 𝐵 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) |
47 |
45 46
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝐵 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) ) |
48 |
47
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑎 ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑎 ∃ 𝑘 ∈ 𝐵 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) ) |
49 |
|
rexcom4 |
⊢ ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑎 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑎 ∃ 𝑘 ∈ 𝐵 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ) |
50 |
|
ovex |
⊢ ( 𝑘 · 𝐸 ) ∈ V |
51 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑘 · 𝐸 ) → ( 𝑎 + 𝑢 ) = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑘 · 𝐸 ) → ( 𝑋 = ( 𝑎 + 𝑢 ) ↔ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
53 |
50 52
|
ceqsexv |
⊢ ( ∃ 𝑎 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
54 |
53
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝐵 ∃ 𝑎 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
55 |
49 54
|
bitr3i |
⊢ ( ∃ 𝑎 ∃ 𝑘 ∈ 𝐵 ( 𝑎 = ( 𝑘 · 𝐸 ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |
56 |
48 55
|
bitrdi |
⊢ ( 𝜑 → ( ∃ 𝑎 ( 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∧ 𝑋 = ( 𝑎 + 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
57 |
42 56
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ↔ ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
59 |
41 58
|
syl5bb |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝑁 ‘ { 𝐸 } ) ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) 𝑋 = ( 𝑎 + 𝑢 ) ↔ ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) ) |
60 |
40 59
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘 ∈ 𝐵 𝑋 = ( ( 𝑘 · 𝐸 ) + 𝑢 ) ) |