Metamath Proof Explorer


Theorem hdmapglem7a

Description: Lemma for hdmapg . (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapglem7.h H = LHyp K
hdmapglem7.e E = I Base K I LTrn K W
hdmapglem7.o O = ocH K W
hdmapglem7.u U = DVecH K W
hdmapglem7.v V = Base U
hdmapglem7.p + ˙ = + U
hdmapglem7.q · ˙ = U
hdmapglem7.r R = Scalar U
hdmapglem7.b B = Base R
hdmapglem7.a ˙ = LSSum U
hdmapglem7.n N = LSpan U
hdmapglem7.k φ K HL W H
hdmapglem7.x φ X V
Assertion hdmapglem7a φ u O E k B X = k · ˙ E + ˙ u

Proof

Step Hyp Ref Expression
1 hdmapglem7.h H = LHyp K
2 hdmapglem7.e E = I Base K I LTrn K W
3 hdmapglem7.o O = ocH K W
4 hdmapglem7.u U = DVecH K W
5 hdmapglem7.v V = Base U
6 hdmapglem7.p + ˙ = + U
7 hdmapglem7.q · ˙ = U
8 hdmapglem7.r R = Scalar U
9 hdmapglem7.b B = Base R
10 hdmapglem7.a ˙ = LSSum U
11 hdmapglem7.n N = LSpan U
12 hdmapglem7.k φ K HL W H
13 hdmapglem7.x φ X V
14 eqid LSubSp U = LSubSp U
15 1 4 12 dvhlmod φ U LMod
16 eqid Base K = Base K
17 eqid LTrn K W = LTrn K W
18 eqid 0 U = 0 U
19 1 16 17 4 5 18 2 12 dvheveccl φ E V 0 U
20 19 eldifad φ E V
21 5 14 11 lspsncl U LMod E V N E LSubSp U
22 15 20 21 syl2anc φ N E LSubSp U
23 20 snssd φ E V
24 1 4 3 5 11 12 23 dochocsp φ O N E = O E
25 24 fveq2d φ O O N E = O O E
26 1 4 3 5 11 12 20 dochocsn φ O O E = N E
27 25 26 eqtrd φ O O N E = N E
28 1 3 4 5 14 10 12 22 27 dochexmid φ N E ˙ O N E = V
29 24 oveq2d φ N E ˙ O N E = N E ˙ O E
30 28 29 eqtr3d φ V = N E ˙ O E
31 13 30 eleqtrd φ X N E ˙ O E
32 14 lsssssubg U LMod LSubSp U SubGrp U
33 15 32 syl φ LSubSp U SubGrp U
34 33 22 sseldd φ N E SubGrp U
35 1 4 5 14 3 dochlss K HL W H E V O E LSubSp U
36 12 23 35 syl2anc φ O E LSubSp U
37 33 36 sseldd φ O E SubGrp U
38 6 10 lsmelval N E SubGrp U O E SubGrp U X N E ˙ O E a N E u O E X = a + ˙ u
39 34 37 38 syl2anc φ X N E ˙ O E a N E u O E X = a + ˙ u
40 31 39 mpbid φ a N E u O E X = a + ˙ u
41 rexcom a N E u O E X = a + ˙ u u O E a N E X = a + ˙ u
42 df-rex a N E X = a + ˙ u a a N E X = a + ˙ u
43 8 9 5 7 11 lspsnel U LMod E V a N E k B a = k · ˙ E
44 15 20 43 syl2anc φ a N E k B a = k · ˙ E
45 44 anbi1d φ a N E X = a + ˙ u k B a = k · ˙ E X = a + ˙ u
46 r19.41v k B a = k · ˙ E X = a + ˙ u k B a = k · ˙ E X = a + ˙ u
47 45 46 bitr4di φ a N E X = a + ˙ u k B a = k · ˙ E X = a + ˙ u
48 47 exbidv φ a a N E X = a + ˙ u a k B a = k · ˙ E X = a + ˙ u
49 rexcom4 k B a a = k · ˙ E X = a + ˙ u a k B a = k · ˙ E X = a + ˙ u
50 ovex k · ˙ E V
51 oveq1 a = k · ˙ E a + ˙ u = k · ˙ E + ˙ u
52 51 eqeq2d a = k · ˙ E X = a + ˙ u X = k · ˙ E + ˙ u
53 50 52 ceqsexv a a = k · ˙ E X = a + ˙ u X = k · ˙ E + ˙ u
54 53 rexbii k B a a = k · ˙ E X = a + ˙ u k B X = k · ˙ E + ˙ u
55 49 54 bitr3i a k B a = k · ˙ E X = a + ˙ u k B X = k · ˙ E + ˙ u
56 48 55 bitrdi φ a a N E X = a + ˙ u k B X = k · ˙ E + ˙ u
57 42 56 syl5bb φ a N E X = a + ˙ u k B X = k · ˙ E + ˙ u
58 57 rexbidv φ u O E a N E X = a + ˙ u u O E k B X = k · ˙ E + ˙ u
59 41 58 syl5bb φ a N E u O E X = a + ˙ u u O E k B X = k · ˙ E + ˙ u
60 40 59 mpbid φ u O E k B X = k · ˙ E + ˙ u