Metamath Proof Explorer


Theorem hdmapglem7b

Description: Lemma for hdmapg . (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapglem7.h H=LHypK
hdmapglem7.e E=IBaseKILTrnKW
hdmapglem7.o O=ocHKW
hdmapglem7.u U=DVecHKW
hdmapglem7.v V=BaseU
hdmapglem7.p +˙=+U
hdmapglem7.q ·˙=U
hdmapglem7.r R=ScalarU
hdmapglem7.b B=BaseR
hdmapglem7.a ˙=LSSumU
hdmapglem7.n N=LSpanU
hdmapglem7.k φKHLWH
hdmapglem7.x φXV
hdmapglem7.t ×˙=R
hdmapglem7.z 0˙=0R
hdmapglem7.c ˙=+R
hdmapglem7.s S=HDMapKW
hdmapglem7.g G=HGMapKW
hdmapglem7b.u φxOE
hdmapglem7b.v φyOE
hdmapglem7b.k φmB
hdmapglem7b.l φnB
Assertion hdmapglem7b φSm·˙E+˙xn·˙E+˙y=n×˙Gm˙Sxy

Proof

Step Hyp Ref Expression
1 hdmapglem7.h H=LHypK
2 hdmapglem7.e E=IBaseKILTrnKW
3 hdmapglem7.o O=ocHKW
4 hdmapglem7.u U=DVecHKW
5 hdmapglem7.v V=BaseU
6 hdmapglem7.p +˙=+U
7 hdmapglem7.q ·˙=U
8 hdmapglem7.r R=ScalarU
9 hdmapglem7.b B=BaseR
10 hdmapglem7.a ˙=LSSumU
11 hdmapglem7.n N=LSpanU
12 hdmapglem7.k φKHLWH
13 hdmapglem7.x φXV
14 hdmapglem7.t ×˙=R
15 hdmapglem7.z 0˙=0R
16 hdmapglem7.c ˙=+R
17 hdmapglem7.s S=HDMapKW
18 hdmapglem7.g G=HGMapKW
19 hdmapglem7b.u φxOE
20 hdmapglem7b.v φyOE
21 hdmapglem7b.k φmB
22 hdmapglem7b.l φnB
23 1 4 12 dvhlmod φULMod
24 eqid BaseK=BaseK
25 eqid LTrnKW=LTrnKW
26 eqid 0U=0U
27 1 24 25 4 5 26 2 12 dvheveccl φEV0U
28 27 eldifad φEV
29 5 8 7 9 lmodvscl ULModnBEVn·˙EV
30 23 22 28 29 syl3anc φn·˙EV
31 28 snssd φEV
32 1 4 5 3 dochssv KHLWHEVOEV
33 12 31 32 syl2anc φOEV
34 33 20 sseldd φyV
35 5 6 lmodvacl ULModn·˙EVyVn·˙E+˙yV
36 23 30 34 35 syl3anc φn·˙E+˙yV
37 33 19 sseldd φxV
38 1 4 5 6 7 8 9 16 14 17 18 12 36 28 37 21 hdmapgln2 φSm·˙E+˙xn·˙E+˙y=SEn·˙E+˙y×˙Gm˙Sxn·˙E+˙y
39 1 4 5 6 7 8 9 16 14 17 12 28 34 28 22 hdmapln1 φSEn·˙E+˙y=n×˙SEE˙SEy
40 eqid HVMapKW=HVMapKW
41 eqid 1R=1R
42 1 2 40 17 12 4 8 41 hdmapevec2 φSEE=1R
43 42 oveq2d φn×˙SEE=n×˙1R
44 8 lmodring ULModRRing
45 23 44 syl φRRing
46 9 14 41 ringridm RRingnBn×˙1R=n
47 45 22 46 syl2anc φn×˙1R=n
48 43 47 eqtrd φn×˙SEE=n
49 1 2 3 4 5 8 9 14 15 17 12 20 hdmapinvlem1 φSEy=0˙
50 48 49 oveq12d φn×˙SEE˙SEy=n˙0˙
51 ringgrp RRingRGrp
52 45 51 syl φRGrp
53 9 16 15 grprid RGrpnBn˙0˙=n
54 52 22 53 syl2anc φn˙0˙=n
55 39 50 54 3eqtrd φSEn·˙E+˙y=n
56 55 oveq1d φSEn·˙E+˙y×˙Gm=n×˙Gm
57 1 4 5 6 7 8 9 16 14 17 12 28 34 37 22 hdmapln1 φSxn·˙E+˙y=n×˙SxE˙Sxy
58 1 2 3 4 5 8 9 14 15 17 12 19 hdmapinvlem2 φSxE=0˙
59 58 oveq2d φn×˙SxE=n×˙0˙
60 9 14 15 ringrz RRingnBn×˙0˙=0˙
61 45 22 60 syl2anc φn×˙0˙=0˙
62 59 61 eqtrd φn×˙SxE=0˙
63 62 oveq1d φn×˙SxE˙Sxy=0˙˙Sxy
64 1 4 5 8 9 17 12 34 37 hdmapipcl φSxyB
65 9 16 15 grplid RGrpSxyB0˙˙Sxy=Sxy
66 52 64 65 syl2anc φ0˙˙Sxy=Sxy
67 57 63 66 3eqtrd φSxn·˙E+˙y=Sxy
68 56 67 oveq12d φSEn·˙E+˙y×˙Gm˙Sxn·˙E+˙y=n×˙Gm˙Sxy
69 38 68 eqtrd φSm·˙E+˙xn·˙E+˙y=n×˙Gm˙Sxy