| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem7.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapglem7.e |  |-  E = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 3 |  | hdmapglem7.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | hdmapglem7.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | hdmapglem7.v |  |-  V = ( Base ` U ) | 
						
							| 6 |  | hdmapglem7.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | hdmapglem7.q |  |-  .x. = ( .s ` U ) | 
						
							| 8 |  | hdmapglem7.r |  |-  R = ( Scalar ` U ) | 
						
							| 9 |  | hdmapglem7.b |  |-  B = ( Base ` R ) | 
						
							| 10 |  | hdmapglem7.a |  |-  .(+) = ( LSSum ` U ) | 
						
							| 11 |  | hdmapglem7.n |  |-  N = ( LSpan ` U ) | 
						
							| 12 |  | hdmapglem7.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | hdmapglem7.x |  |-  ( ph -> X e. V ) | 
						
							| 14 |  | hdmapglem7.t |  |-  .X. = ( .r ` R ) | 
						
							| 15 |  | hdmapglem7.z |  |-  .0. = ( 0g ` R ) | 
						
							| 16 |  | hdmapglem7.c |  |-  .+b = ( +g ` R ) | 
						
							| 17 |  | hdmapglem7.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 18 |  | hdmapglem7.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 19 |  | hdmapglem7b.u |  |-  ( ph -> x e. ( O ` { E } ) ) | 
						
							| 20 |  | hdmapglem7b.v |  |-  ( ph -> y e. ( O ` { E } ) ) | 
						
							| 21 |  | hdmapglem7b.k |  |-  ( ph -> m e. B ) | 
						
							| 22 |  | hdmapglem7b.l |  |-  ( ph -> n e. B ) | 
						
							| 23 | 1 4 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 24 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 25 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 26 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 27 | 1 24 25 4 5 26 2 12 | dvheveccl |  |-  ( ph -> E e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 28 | 27 | eldifad |  |-  ( ph -> E e. V ) | 
						
							| 29 | 5 8 7 9 | lmodvscl |  |-  ( ( U e. LMod /\ n e. B /\ E e. V ) -> ( n .x. E ) e. V ) | 
						
							| 30 | 23 22 28 29 | syl3anc |  |-  ( ph -> ( n .x. E ) e. V ) | 
						
							| 31 | 28 | snssd |  |-  ( ph -> { E } C_ V ) | 
						
							| 32 | 1 4 5 3 | dochssv |  |-  ( ( ( K e. HL /\ W e. H ) /\ { E } C_ V ) -> ( O ` { E } ) C_ V ) | 
						
							| 33 | 12 31 32 | syl2anc |  |-  ( ph -> ( O ` { E } ) C_ V ) | 
						
							| 34 | 33 20 | sseldd |  |-  ( ph -> y e. V ) | 
						
							| 35 | 5 6 | lmodvacl |  |-  ( ( U e. LMod /\ ( n .x. E ) e. V /\ y e. V ) -> ( ( n .x. E ) .+ y ) e. V ) | 
						
							| 36 | 23 30 34 35 | syl3anc |  |-  ( ph -> ( ( n .x. E ) .+ y ) e. V ) | 
						
							| 37 | 33 19 | sseldd |  |-  ( ph -> x e. V ) | 
						
							| 38 | 1 4 5 6 7 8 9 16 14 17 18 12 36 28 37 21 | hdmapgln2 |  |-  ( ph -> ( ( S ` ( ( m .x. E ) .+ x ) ) ` ( ( n .x. E ) .+ y ) ) = ( ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) .+b ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) ) ) | 
						
							| 39 | 1 4 5 6 7 8 9 16 14 17 12 28 34 28 22 | hdmapln1 |  |-  ( ph -> ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( ( S ` E ) ` E ) ) .+b ( ( S ` E ) ` y ) ) ) | 
						
							| 40 |  | eqid |  |-  ( ( HVMap ` K ) ` W ) = ( ( HVMap ` K ) ` W ) | 
						
							| 41 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 42 | 1 2 40 17 12 4 8 41 | hdmapevec2 |  |-  ( ph -> ( ( S ` E ) ` E ) = ( 1r ` R ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ph -> ( n .X. ( ( S ` E ) ` E ) ) = ( n .X. ( 1r ` R ) ) ) | 
						
							| 44 | 8 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 45 | 23 44 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 46 | 9 14 41 | ringridm |  |-  ( ( R e. Ring /\ n e. B ) -> ( n .X. ( 1r ` R ) ) = n ) | 
						
							| 47 | 45 22 46 | syl2anc |  |-  ( ph -> ( n .X. ( 1r ` R ) ) = n ) | 
						
							| 48 | 43 47 | eqtrd |  |-  ( ph -> ( n .X. ( ( S ` E ) ` E ) ) = n ) | 
						
							| 49 | 1 2 3 4 5 8 9 14 15 17 12 20 | hdmapinvlem1 |  |-  ( ph -> ( ( S ` E ) ` y ) = .0. ) | 
						
							| 50 | 48 49 | oveq12d |  |-  ( ph -> ( ( n .X. ( ( S ` E ) ` E ) ) .+b ( ( S ` E ) ` y ) ) = ( n .+b .0. ) ) | 
						
							| 51 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 52 | 45 51 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 53 | 9 16 15 | grprid |  |-  ( ( R e. Grp /\ n e. B ) -> ( n .+b .0. ) = n ) | 
						
							| 54 | 52 22 53 | syl2anc |  |-  ( ph -> ( n .+b .0. ) = n ) | 
						
							| 55 | 39 50 54 | 3eqtrd |  |-  ( ph -> ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) = n ) | 
						
							| 56 | 55 | oveq1d |  |-  ( ph -> ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) = ( n .X. ( G ` m ) ) ) | 
						
							| 57 | 1 4 5 6 7 8 9 16 14 17 12 28 34 37 22 | hdmapln1 |  |-  ( ph -> ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( ( S ` x ) ` E ) ) .+b ( ( S ` x ) ` y ) ) ) | 
						
							| 58 | 1 2 3 4 5 8 9 14 15 17 12 19 | hdmapinvlem2 |  |-  ( ph -> ( ( S ` x ) ` E ) = .0. ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ph -> ( n .X. ( ( S ` x ) ` E ) ) = ( n .X. .0. ) ) | 
						
							| 60 | 9 14 15 | ringrz |  |-  ( ( R e. Ring /\ n e. B ) -> ( n .X. .0. ) = .0. ) | 
						
							| 61 | 45 22 60 | syl2anc |  |-  ( ph -> ( n .X. .0. ) = .0. ) | 
						
							| 62 | 59 61 | eqtrd |  |-  ( ph -> ( n .X. ( ( S ` x ) ` E ) ) = .0. ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ph -> ( ( n .X. ( ( S ` x ) ` E ) ) .+b ( ( S ` x ) ` y ) ) = ( .0. .+b ( ( S ` x ) ` y ) ) ) | 
						
							| 64 | 1 4 5 8 9 17 12 34 37 | hdmapipcl |  |-  ( ph -> ( ( S ` x ) ` y ) e. B ) | 
						
							| 65 | 9 16 15 | grplid |  |-  ( ( R e. Grp /\ ( ( S ` x ) ` y ) e. B ) -> ( .0. .+b ( ( S ` x ) ` y ) ) = ( ( S ` x ) ` y ) ) | 
						
							| 66 | 52 64 65 | syl2anc |  |-  ( ph -> ( .0. .+b ( ( S ` x ) ` y ) ) = ( ( S ` x ) ` y ) ) | 
						
							| 67 | 57 63 66 | 3eqtrd |  |-  ( ph -> ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) = ( ( S ` x ) ` y ) ) | 
						
							| 68 | 56 67 | oveq12d |  |-  ( ph -> ( ( ( ( S ` E ) ` ( ( n .x. E ) .+ y ) ) .X. ( G ` m ) ) .+b ( ( S ` x ) ` ( ( n .x. E ) .+ y ) ) ) = ( ( n .X. ( G ` m ) ) .+b ( ( S ` x ) ` y ) ) ) | 
						
							| 69 | 38 68 | eqtrd |  |-  ( ph -> ( ( S ` ( ( m .x. E ) .+ x ) ) ` ( ( n .x. E ) .+ y ) ) = ( ( n .X. ( G ` m ) ) .+b ( ( S ` x ) ` y ) ) ) |