| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem7.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem7.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem7.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem7.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem7.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem7.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem7.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | hdmapglem7.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | hdmapglem7.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 11 |  | hdmapglem7.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 12 |  | hdmapglem7.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | hdmapglem7.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 14 |  | hdmapglem7.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 15 |  | hdmapglem7.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 16 |  | hdmapglem7.c | ⊢  ✚   =  ( +g ‘ 𝑅 ) | 
						
							| 17 |  | hdmapglem7.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 |  | hdmapglem7.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | hdmapglem7b.u | ⊢ ( 𝜑  →  𝑥  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 20 |  | hdmapglem7b.v | ⊢ ( 𝜑  →  𝑦  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 21 |  | hdmapglem7b.k | ⊢ ( 𝜑  →  𝑚  ∈  𝐵 ) | 
						
							| 22 |  | hdmapglem7b.l | ⊢ ( 𝜑  →  𝑛  ∈  𝐵 ) | 
						
							| 23 | 1 4 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 25 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 27 | 1 24 25 4 5 26 2 12 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 28 | 27 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 29 | 5 8 7 9 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑛  ∈  𝐵  ∧  𝐸  ∈  𝑉 )  →  ( 𝑛  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 30 | 23 22 28 29 | syl3anc | ⊢ ( 𝜑  →  ( 𝑛  ·  𝐸 )  ∈  𝑉 ) | 
						
							| 31 | 28 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 32 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 33 | 12 31 32 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 34 | 33 20 | sseldd | ⊢ ( 𝜑  →  𝑦  ∈  𝑉 ) | 
						
							| 35 | 5 6 | lmodvacl | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑛  ·  𝐸 )  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑛  ·  𝐸 )  +  𝑦 )  ∈  𝑉 ) | 
						
							| 36 | 23 30 34 35 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑛  ·  𝐸 )  +  𝑦 )  ∈  𝑉 ) | 
						
							| 37 | 33 19 | sseldd | ⊢ ( 𝜑  →  𝑥  ∈  𝑉 ) | 
						
							| 38 | 1 4 5 6 7 8 9 16 14 17 18 12 36 28 37 21 | hdmapgln2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝑚  ·  𝐸 )  +  𝑥 ) ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  ( ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  ×  ( 𝐺 ‘ 𝑚 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) ) ) ) | 
						
							| 39 | 1 4 5 6 7 8 9 16 14 17 12 28 34 28 22 | hdmapln1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  ( ( 𝑛  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) )  ✚  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝑦 ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 41 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 42 | 1 2 40 17 12 4 8 41 | hdmapevec2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝜑  →  ( 𝑛  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) )  =  ( 𝑛  ×  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 44 | 8 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 45 | 23 44 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 46 | 9 14 41 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  𝐵 )  →  ( 𝑛  ×  ( 1r ‘ 𝑅 ) )  =  𝑛 ) | 
						
							| 47 | 45 22 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝑛  ×  ( 1r ‘ 𝑅 ) )  =  𝑛 ) | 
						
							| 48 | 43 47 | eqtrd | ⊢ ( 𝜑  →  ( 𝑛  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) )  =  𝑛 ) | 
						
							| 49 | 1 2 3 4 5 8 9 14 15 17 12 20 | hdmapinvlem1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝑦 )  =   0  ) | 
						
							| 50 | 48 49 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝑛  ×  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝐸 ) )  ✚  ( ( 𝑆 ‘ 𝐸 ) ‘ 𝑦 ) )  =  ( 𝑛  ✚   0  ) ) | 
						
							| 51 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 52 | 45 51 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 53 | 9 16 15 | grprid | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑛  ∈  𝐵 )  →  ( 𝑛  ✚   0  )  =  𝑛 ) | 
						
							| 54 | 52 22 53 | syl2anc | ⊢ ( 𝜑  →  ( 𝑛  ✚   0  )  =  𝑛 ) | 
						
							| 55 | 39 50 54 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝐸 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  𝑛 ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  ×  ( 𝐺 ‘ 𝑚 ) )  =  ( 𝑛  ×  ( 𝐺 ‘ 𝑚 ) ) ) | 
						
							| 57 | 1 4 5 6 7 8 9 16 14 17 12 28 34 37 22 | hdmapln1 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑥 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  ( ( 𝑛  ×  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐸 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) ) | 
						
							| 58 | 1 2 3 4 5 8 9 14 15 17 12 19 | hdmapinvlem2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐸 )  =   0  ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝜑  →  ( 𝑛  ×  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐸 ) )  =  ( 𝑛  ×   0  ) ) | 
						
							| 60 | 9 14 15 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑛  ∈  𝐵 )  →  ( 𝑛  ×   0  )  =   0  ) | 
						
							| 61 | 45 22 60 | syl2anc | ⊢ ( 𝜑  →  ( 𝑛  ×   0  )  =   0  ) | 
						
							| 62 | 59 61 | eqtrd | ⊢ ( 𝜑  →  ( 𝑛  ×  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐸 ) )  =   0  ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑛  ×  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐸 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) )  =  (  0   ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) ) | 
						
							| 64 | 1 4 5 8 9 17 12 34 37 | hdmapipcl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 65 | 9 16 15 | grplid | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 )  ∈  𝐵 )  →  (  0   ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 66 | 52 64 65 | syl2anc | ⊢ ( 𝜑  →  (  0   ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 67 | 57 63 66 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑥 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) | 
						
							| 68 | 56 67 | oveq12d | ⊢ ( 𝜑  →  ( ( ( ( 𝑆 ‘ 𝐸 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  ×  ( 𝐺 ‘ 𝑚 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) ) )  =  ( ( 𝑛  ×  ( 𝐺 ‘ 𝑚 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) ) | 
						
							| 69 | 38 68 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝑚  ·  𝐸 )  +  𝑥 ) ) ‘ ( ( 𝑛  ·  𝐸 )  +  𝑦 ) )  =  ( ( 𝑛  ×  ( 𝐺 ‘ 𝑚 ) )  ✚  ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑦 ) ) ) |