Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapg.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hdmapg.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmapg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hdmapg.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
8 |
|
hdmapg.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
9 |
|
eqid |
⊢ 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 |
10 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
15 |
|
eqid |
⊢ ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑈 ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
19 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) |
20 |
1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8
|
hdmapglem7 |
⊢ ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) |