Metamath Proof Explorer


Theorem hdmapg

Description: Apply the scalar sigma function (involution) G to an inner product reverses the arguments. The inner product of X and Y is represented by ( ( SY )X ) . Line 15 in Baer p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapg.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapg.v 𝑉 = ( Base ‘ 𝑈 )
hdmapg.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapg.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapg.x ( 𝜑𝑋𝑉 )
hdmapg.y ( 𝜑𝑌𝑉 )
Assertion hdmapg ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆𝑋 ) ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 hdmapg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapg.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapg.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
5 hdmapg.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
6 hdmapg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hdmapg.x ( 𝜑𝑋𝑉 )
8 hdmapg.y ( 𝜑𝑌𝑉 )
9 eqid ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩
10 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( +g𝑈 ) = ( +g𝑈 )
12 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
13 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
14 eqid ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) )
15 eqid ( LSSum ‘ 𝑈 ) = ( LSSum ‘ 𝑈 )
16 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
17 eqid ( .r ‘ ( Scalar ‘ 𝑈 ) ) = ( .r ‘ ( Scalar ‘ 𝑈 ) )
18 eqid ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) )
19 eqid ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) )
20 1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8 hdmapglem7 ( 𝜑 → ( 𝐺 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆𝑋 ) ‘ 𝑌 ) )