| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapg.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapg.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapg.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapg.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hdmapg.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hdmapg.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | hdmapg.x |  |-  ( ph -> X e. V ) | 
						
							| 8 |  | hdmapg.y |  |-  ( ph -> Y e. V ) | 
						
							| 9 |  | eqid |  |-  <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. | 
						
							| 10 |  | eqid |  |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 12 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 13 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) | 
						
							| 15 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 16 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 17 |  | eqid |  |-  ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) | 
						
							| 18 |  | eqid |  |-  ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) | 
						
							| 19 |  | eqid |  |-  ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) | 
						
							| 20 | 1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8 | hdmapglem7 |  |-  ( ph -> ( G ` ( ( S ` Y ) ` X ) ) = ( ( S ` X ) ` Y ) ) |