Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapg.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapg.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapg.v |
|- V = ( Base ` U ) |
4 |
|
hdmapg.s |
|- S = ( ( HDMap ` K ) ` W ) |
5 |
|
hdmapg.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hdmapg.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
hdmapg.x |
|- ( ph -> X e. V ) |
8 |
|
hdmapg.y |
|- ( ph -> Y e. V ) |
9 |
|
eqid |
|- <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. |
10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
11 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
12 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
13 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
14 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
15 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
16 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
17 |
|
eqid |
|- ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) ) |
18 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
19 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
20 |
1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8
|
hdmapglem7 |
|- ( ph -> ( G ` ( ( S ` Y ) ` X ) ) = ( ( S ` X ) ` Y ) ) |