Metamath Proof Explorer


Theorem hdmapg

Description: Apply the scalar sigma function (involution) G to an inner product reverses the arguments. The inner product of X and Y is represented by ( ( SY )X ) . Line 15 in Baer p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapg.h
|- H = ( LHyp ` K )
hdmapg.u
|- U = ( ( DVecH ` K ) ` W )
hdmapg.v
|- V = ( Base ` U )
hdmapg.s
|- S = ( ( HDMap ` K ) ` W )
hdmapg.g
|- G = ( ( HGMap ` K ) ` W )
hdmapg.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmapg.x
|- ( ph -> X e. V )
hdmapg.y
|- ( ph -> Y e. V )
Assertion hdmapg
|- ( ph -> ( G ` ( ( S ` Y ) ` X ) ) = ( ( S ` X ) ` Y ) )

Proof

Step Hyp Ref Expression
1 hdmapg.h
 |-  H = ( LHyp ` K )
2 hdmapg.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmapg.v
 |-  V = ( Base ` U )
4 hdmapg.s
 |-  S = ( ( HDMap ` K ) ` W )
5 hdmapg.g
 |-  G = ( ( HGMap ` K ) ` W )
6 hdmapg.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 hdmapg.x
 |-  ( ph -> X e. V )
8 hdmapg.y
 |-  ( ph -> Y e. V )
9 eqid
 |-  <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >. = <. ( _I |` ( Base ` K ) ) , ( _I |` ( ( LTrn ` K ) ` W ) ) >.
10 eqid
 |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W )
11 eqid
 |-  ( +g ` U ) = ( +g ` U )
12 eqid
 |-  ( .s ` U ) = ( .s ` U )
13 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
14 eqid
 |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) )
15 eqid
 |-  ( LSSum ` U ) = ( LSSum ` U )
16 eqid
 |-  ( LSpan ` U ) = ( LSpan ` U )
17 eqid
 |-  ( .r ` ( Scalar ` U ) ) = ( .r ` ( Scalar ` U ) )
18 eqid
 |-  ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) )
19 eqid
 |-  ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) )
20 1 9 10 2 3 11 12 13 14 15 16 6 7 17 18 19 4 5 8 hdmapglem7
 |-  ( ph -> ( G ` ( ( S ` Y ) ` X ) ) = ( ( S ` X ) ` Y ) )