| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglem7.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglem7.e | ⊢ 𝐸  =  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  (  I   ↾  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 | 
						
							| 3 |  | hdmapglem7.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmapglem7.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hdmapglem7.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglem7.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 7 |  | hdmapglem7.q | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 8 |  | hdmapglem7.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 9 |  | hdmapglem7.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 10 |  | hdmapglem7.a | ⊢  ⊕   =  ( LSSum ‘ 𝑈 ) | 
						
							| 11 |  | hdmapglem7.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 12 |  | hdmapglem7.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | hdmapglem7.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 14 |  | hdmapglem7.t | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 15 |  | hdmapglem7.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 16 |  | hdmapglem7.c | ⊢  ✚   =  ( +g ‘ 𝑅 ) | 
						
							| 17 |  | hdmapglem7.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 18 |  | hdmapglem7.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | hdmapglem7.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | hdmapglem7a | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘  ∈  𝐵 𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 19 | hdmapglem7a | ⊢ ( 𝜑  →  ∃ 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙  ∈  𝐵 𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) | 
						
							| 22 | 12 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 23 | 1 4 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 24 | 8 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝑅  ∈  Ring ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 27 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 28 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑙  ∈  𝐵 ) | 
						
							| 29 | 1 4 8 9 18 22 28 | hgmapcl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ 𝑙 )  ∈  𝐵 ) | 
						
							| 30 | 9 14 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑘  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑙 )  ∈  𝐵 )  →  ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ∈  𝐵 ) | 
						
							| 31 | 26 27 29 30 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ∈  𝐵 ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 33 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 35 | 1 32 33 4 5 34 2 12 | dvheveccl | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 36 | 35 | eldifad | ⊢ ( 𝜑  →  𝐸  ∈  𝑉 ) | 
						
							| 37 | 36 | snssd | ⊢ ( 𝜑  →  { 𝐸 }  ⊆  𝑉 ) | 
						
							| 38 | 1 4 5 3 | dochssv | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  { 𝐸 }  ⊆  𝑉 )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 39 | 12 37 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 40 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝑂 ‘ { 𝐸 } )  ⊆  𝑉 ) | 
						
							| 41 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑢  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 42 | 40 41 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑢  ∈  𝑉 ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑣  ∈  ( 𝑂 ‘ { 𝐸 } ) ) | 
						
							| 44 | 40 43 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 45 | 1 4 5 8 9 17 22 42 44 | hdmapipcl | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 )  ∈  𝐵 ) | 
						
							| 46 | 1 4 8 9 16 18 22 31 45 | hgmapadd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ✚  ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) )  =  ( ( 𝐺 ‘ ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) ) )  ✚  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ) | 
						
							| 47 | 1 4 8 9 14 18 22 27 29 | hgmapmul | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) ) )  =  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) )  ×  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 48 | 1 4 8 9 18 22 28 | hgmapvv | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) )  =  𝑙 ) | 
						
							| 49 | 48 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( ( 𝐺 ‘ ( 𝐺 ‘ 𝑙 ) )  ×  ( 𝐺 ‘ 𝑘 ) )  =  ( 𝑙  ×  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 50 | 47 49 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) ) )  =  ( 𝑙  ×  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( -g ‘ 𝑈 )  =  ( -g ‘ 𝑈 ) | 
						
							| 52 | 1 2 3 4 5 6 51 7 8 9 14 15 17 18 22 41 43 27 27 | hdmapglem5 | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) )  =  ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) | 
						
							| 53 | 50 52 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( ( 𝐺 ‘ ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) ) )  ✚  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) )  =  ( ( 𝑙  ×  ( 𝐺 ‘ 𝑘 ) )  ✚  ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) | 
						
							| 54 | 46 53 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ✚  ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) )  =  ( ( 𝑙  ×  ( 𝐺 ‘ 𝑘 ) )  ✚  ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) | 
						
							| 55 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 43 41 28 27 | hdmapglem7b | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  =  ( ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ✚  ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) )  =  ( 𝐺 ‘ ( ( 𝑘  ×  ( 𝐺 ‘ 𝑙 ) )  ✚  ( ( 𝑆 ‘ 𝑣 ) ‘ 𝑢 ) ) ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 22 55 14 15 16 17 18 41 43 27 28 | hdmapglem7b | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  =  ( ( 𝑙  ×  ( 𝐺 ‘ 𝑘 ) )  ✚  ( ( 𝑆 ‘ 𝑢 ) ‘ 𝑣 ) ) ) | 
						
							| 59 | 54 57 58 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) )  =  ( ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ) | 
						
							| 60 | 59 | 3adantl3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) )  =  ( ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ) | 
						
							| 61 | 60 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) )  =  ( ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ) | 
						
							| 62 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) | 
						
							| 63 | 62 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( 𝑆 ‘ 𝑌 )  =  ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ) | 
						
							| 64 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) | 
						
							| 65 | 63 64 | fveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ) | 
						
							| 66 | 65 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( 𝐺 ‘ ( ( 𝑆 ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ) ) | 
						
							| 67 | 64 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ) | 
						
							| 68 | 67 62 | fveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 )  =  ( ( 𝑆 ‘ ( ( 𝑘  ·  𝐸 )  +  𝑢 ) ) ‘ ( ( 𝑙  ·  𝐸 )  +  𝑣 ) ) ) | 
						
							| 69 | 61 66 68 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  ∧  ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  ∧  𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 ) )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) | 
						
							| 70 | 69 | 3exp | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  →  ( ( 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑙  ∈  𝐵 )  →  ( 𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) | 
						
							| 71 | 70 | rexlimdvv | ⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  ∧  𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 ) )  →  ( ∃ 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙  ∈  𝐵 𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) | 
						
							| 72 | 71 | 3exp | ⊢ ( 𝜑  →  ( ( 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } )  ∧  𝑘  ∈  𝐵 )  →  ( 𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 )  →  ( ∃ 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙  ∈  𝐵 𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) ) | 
						
							| 73 | 72 | rexlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑘  ∈  𝐵 𝑋  =  ( ( 𝑘  ·  𝐸 )  +  𝑢 )  →  ( ∃ 𝑣  ∈  ( 𝑂 ‘ { 𝐸 } ) ∃ 𝑙  ∈  𝐵 𝑌  =  ( ( 𝑙  ·  𝐸 )  +  𝑣 )  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) ) ) | 
						
							| 74 | 20 21 73 | mp2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) )  =  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) ) |