| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapmul.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapmul.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapmul.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmapmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | hgmapmul.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 6 |  | hgmapmul.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hgmapmul.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | hgmapmul.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 9 |  | hgmapmul.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 12 | 1 2 10 11 7 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( Base ‘ 𝑈 ) 𝑡  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 | 1 13 7 | lcdlmod | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 16 |  | eqid | ⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 18 | 1 2 3 4 13 16 17 6 7 8 | hgmapdcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 20 | 1 2 3 4 13 16 17 6 7 9 | hgmapdcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 24 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 25 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑡  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 26 | 1 2 10 13 22 23 24 25 | hdmapcl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 27 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 28 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 29 | 22 16 27 17 28 | lmodvsass | ⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod  ∧  ( ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  ( 𝐺 ‘ 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ( ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) | 
						
							| 30 | 15 19 21 26 29 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) | 
						
							| 31 | 1 2 7 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑈  ∈  LMod ) | 
						
							| 33 | 8 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 34 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 35 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 36 | 10 3 35 4 5 | lmodvsass | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑡  ∈  ( Base ‘ 𝑈 ) ) )  →  ( ( 𝑋  ·  𝑌 ) (  ·𝑠  ‘ 𝑈 ) 𝑡 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) | 
						
							| 37 | 32 33 34 25 36 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝑋  ·  𝑌 ) (  ·𝑠  ‘ 𝑈 ) 𝑡 )  =  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋  ·  𝑌 ) (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 (  ·𝑠  ‘ 𝑈 ) ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) ) | 
						
							| 39 | 10 3 35 4 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝐵  ∧  𝑡  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 40 | 32 34 25 39 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 41 | 1 2 10 35 3 4 13 27 23 6 24 40 33 | hgmapvs | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 (  ·𝑠  ‘ 𝑈 ) ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) ) | 
						
							| 42 | 1 2 10 35 3 4 13 27 23 6 24 25 34 | hgmapvs | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) | 
						
							| 44 | 38 41 43 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋  ·  𝑌 ) (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) ) | 
						
							| 45 | 3 4 5 | lmodmcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 46 | 31 8 9 45 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑋  ·  𝑌 )  ∈  𝐵 ) | 
						
							| 48 | 1 2 10 35 3 4 13 27 23 6 24 25 47 | hgmapvs | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝑋  ·  𝑌 ) (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 49 | 30 44 48 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  =  ( ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 51 | 1 13 7 | lcdlvec | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LVec ) | 
						
							| 53 | 1 2 3 4 13 16 17 6 7 46 | hgmapdcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 54 | 53 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 55 | 16 17 28 | lmodmcl | ⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod  ∧  ( 𝐺 ‘ 𝑋 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  ∧  ( 𝐺 ‘ 𝑌 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 56 | 14 18 20 55 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 58 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑡  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 59 | 1 2 10 11 13 50 23 24 25 | hdmapeq0 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑡  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 60 | 59 | necon3bid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 )  ≠  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑡  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 61 | 58 60 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 )  ≠  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 62 | 22 27 16 17 50 52 54 57 26 61 | lvecvscan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  =  ( ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  ↔  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) ) | 
						
							| 63 | 49 62 | mpbid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) | 
						
							| 64 | 63 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  ( Base ‘ 𝑈 ) 𝑡  ≠  ( 0g ‘ 𝑈 )  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) ) | 
						
							| 65 | 12 64 | mpd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) ) ) | 
						
							| 66 | 1 2 3 4 6 7 8 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 67 | 1 2 3 4 6 7 9 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 68 | 1 2 3 4 5 13 16 28 7 66 67 | lcdsmul | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 ) ( .r ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( 𝐺 ‘ 𝑌 ) )  =  ( ( 𝐺 ‘ 𝑌 )  ·  ( 𝐺 ‘ 𝑋 ) ) ) | 
						
							| 69 | 65 68 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑋  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝑌 )  ·  ( 𝐺 ‘ 𝑋 ) ) ) |