| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapmul.h |
|
| 2 |
|
hgmapmul.u |
|
| 3 |
|
hgmapmul.r |
|
| 4 |
|
hgmapmul.b |
|
| 5 |
|
hgmapmul.t |
|
| 6 |
|
hgmapmul.g |
|
| 7 |
|
hgmapmul.k |
|
| 8 |
|
hgmapmul.x |
|
| 9 |
|
hgmapmul.y |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 2 10 11 7
|
dvh1dim |
|
| 13 |
|
eqid |
|
| 14 |
1 13 7
|
lcdlmod |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
1 2 3 4 13 16 17 6 7 8
|
hgmapdcl |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
1 2 3 4 13 16 17 6 7 9
|
hgmapdcl |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
7
|
3ad2ant1 |
|
| 25 |
|
simp2 |
|
| 26 |
1 2 10 13 22 23 24 25
|
hdmapcl |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
22 16 27 17 28
|
lmodvsass |
|
| 30 |
15 19 21 26 29
|
syl13anc |
|
| 31 |
1 2 7
|
dvhlmod |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
8
|
3ad2ant1 |
|
| 34 |
9
|
3ad2ant1 |
|
| 35 |
|
eqid |
|
| 36 |
10 3 35 4 5
|
lmodvsass |
|
| 37 |
32 33 34 25 36
|
syl13anc |
|
| 38 |
37
|
fveq2d |
|
| 39 |
10 3 35 4
|
lmodvscl |
|
| 40 |
32 34 25 39
|
syl3anc |
|
| 41 |
1 2 10 35 3 4 13 27 23 6 24 40 33
|
hgmapvs |
|
| 42 |
1 2 10 35 3 4 13 27 23 6 24 25 34
|
hgmapvs |
|
| 43 |
42
|
oveq2d |
|
| 44 |
38 41 43
|
3eqtrd |
|
| 45 |
3 4 5
|
lmodmcl |
|
| 46 |
31 8 9 45
|
syl3anc |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
1 2 10 35 3 4 13 27 23 6 24 25 47
|
hgmapvs |
|
| 49 |
30 44 48
|
3eqtr2rd |
|
| 50 |
|
eqid |
|
| 51 |
1 13 7
|
lcdlvec |
|
| 52 |
51
|
3ad2ant1 |
|
| 53 |
1 2 3 4 13 16 17 6 7 46
|
hgmapdcl |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
16 17 28
|
lmodmcl |
|
| 56 |
14 18 20 55
|
syl3anc |
|
| 57 |
56
|
3ad2ant1 |
|
| 58 |
|
simp3 |
|
| 59 |
1 2 10 11 13 50 23 24 25
|
hdmapeq0 |
|
| 60 |
59
|
necon3bid |
|
| 61 |
58 60
|
mpbird |
|
| 62 |
22 27 16 17 50 52 54 57 26 61
|
lvecvscan2 |
|
| 63 |
49 62
|
mpbid |
|
| 64 |
63
|
rexlimdv3a |
|
| 65 |
12 64
|
mpd |
|
| 66 |
1 2 3 4 6 7 8
|
hgmapcl |
|
| 67 |
1 2 3 4 6 7 9
|
hgmapcl |
|
| 68 |
1 2 3 4 5 13 16 28 7 66 67
|
lcdsmul |
|
| 69 |
65 68
|
eqtrd |
|