Metamath Proof Explorer


Theorem hgmapmul

Description: Part 15 of Baer p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hgmapmul.h H = LHyp K
hgmapmul.u U = DVecH K W
hgmapmul.r R = Scalar U
hgmapmul.b B = Base R
hgmapmul.t · ˙ = R
hgmapmul.g G = HGMap K W
hgmapmul.k φ K HL W H
hgmapmul.x φ X B
hgmapmul.y φ Y B
Assertion hgmapmul φ G X · ˙ Y = G Y · ˙ G X

Proof

Step Hyp Ref Expression
1 hgmapmul.h H = LHyp K
2 hgmapmul.u U = DVecH K W
3 hgmapmul.r R = Scalar U
4 hgmapmul.b B = Base R
5 hgmapmul.t · ˙ = R
6 hgmapmul.g G = HGMap K W
7 hgmapmul.k φ K HL W H
8 hgmapmul.x φ X B
9 hgmapmul.y φ Y B
10 eqid Base U = Base U
11 eqid 0 U = 0 U
12 1 2 10 11 7 dvh1dim φ t Base U t 0 U
13 eqid LCDual K W = LCDual K W
14 1 13 7 lcdlmod φ LCDual K W LMod
15 14 3ad2ant1 φ t Base U t 0 U LCDual K W LMod
16 eqid Scalar LCDual K W = Scalar LCDual K W
17 eqid Base Scalar LCDual K W = Base Scalar LCDual K W
18 1 2 3 4 13 16 17 6 7 8 hgmapdcl φ G X Base Scalar LCDual K W
19 18 3ad2ant1 φ t Base U t 0 U G X Base Scalar LCDual K W
20 1 2 3 4 13 16 17 6 7 9 hgmapdcl φ G Y Base Scalar LCDual K W
21 20 3ad2ant1 φ t Base U t 0 U G Y Base Scalar LCDual K W
22 eqid Base LCDual K W = Base LCDual K W
23 eqid HDMap K W = HDMap K W
24 7 3ad2ant1 φ t Base U t 0 U K HL W H
25 simp2 φ t Base U t 0 U t Base U
26 1 2 10 13 22 23 24 25 hdmapcl φ t Base U t 0 U HDMap K W t Base LCDual K W
27 eqid LCDual K W = LCDual K W
28 eqid Scalar LCDual K W = Scalar LCDual K W
29 22 16 27 17 28 lmodvsass LCDual K W LMod G X Base Scalar LCDual K W G Y Base Scalar LCDual K W HDMap K W t Base LCDual K W G X Scalar LCDual K W G Y LCDual K W HDMap K W t = G X LCDual K W G Y LCDual K W HDMap K W t
30 15 19 21 26 29 syl13anc φ t Base U t 0 U G X Scalar LCDual K W G Y LCDual K W HDMap K W t = G X LCDual K W G Y LCDual K W HDMap K W t
31 1 2 7 dvhlmod φ U LMod
32 31 3ad2ant1 φ t Base U t 0 U U LMod
33 8 3ad2ant1 φ t Base U t 0 U X B
34 9 3ad2ant1 φ t Base U t 0 U Y B
35 eqid U = U
36 10 3 35 4 5 lmodvsass U LMod X B Y B t Base U X · ˙ Y U t = X U Y U t
37 32 33 34 25 36 syl13anc φ t Base U t 0 U X · ˙ Y U t = X U Y U t
38 37 fveq2d φ t Base U t 0 U HDMap K W X · ˙ Y U t = HDMap K W X U Y U t
39 10 3 35 4 lmodvscl U LMod Y B t Base U Y U t Base U
40 32 34 25 39 syl3anc φ t Base U t 0 U Y U t Base U
41 1 2 10 35 3 4 13 27 23 6 24 40 33 hgmapvs φ t Base U t 0 U HDMap K W X U Y U t = G X LCDual K W HDMap K W Y U t
42 1 2 10 35 3 4 13 27 23 6 24 25 34 hgmapvs φ t Base U t 0 U HDMap K W Y U t = G Y LCDual K W HDMap K W t
43 42 oveq2d φ t Base U t 0 U G X LCDual K W HDMap K W Y U t = G X LCDual K W G Y LCDual K W HDMap K W t
44 38 41 43 3eqtrd φ t Base U t 0 U HDMap K W X · ˙ Y U t = G X LCDual K W G Y LCDual K W HDMap K W t
45 3 4 5 lmodmcl U LMod X B Y B X · ˙ Y B
46 31 8 9 45 syl3anc φ X · ˙ Y B
47 46 3ad2ant1 φ t Base U t 0 U X · ˙ Y B
48 1 2 10 35 3 4 13 27 23 6 24 25 47 hgmapvs φ t Base U t 0 U HDMap K W X · ˙ Y U t = G X · ˙ Y LCDual K W HDMap K W t
49 30 44 48 3eqtr2rd φ t Base U t 0 U G X · ˙ Y LCDual K W HDMap K W t = G X Scalar LCDual K W G Y LCDual K W HDMap K W t
50 eqid 0 LCDual K W = 0 LCDual K W
51 1 13 7 lcdlvec φ LCDual K W LVec
52 51 3ad2ant1 φ t Base U t 0 U LCDual K W LVec
53 1 2 3 4 13 16 17 6 7 46 hgmapdcl φ G X · ˙ Y Base Scalar LCDual K W
54 53 3ad2ant1 φ t Base U t 0 U G X · ˙ Y Base Scalar LCDual K W
55 16 17 28 lmodmcl LCDual K W LMod G X Base Scalar LCDual K W G Y Base Scalar LCDual K W G X Scalar LCDual K W G Y Base Scalar LCDual K W
56 14 18 20 55 syl3anc φ G X Scalar LCDual K W G Y Base Scalar LCDual K W
57 56 3ad2ant1 φ t Base U t 0 U G X Scalar LCDual K W G Y Base Scalar LCDual K W
58 simp3 φ t Base U t 0 U t 0 U
59 1 2 10 11 13 50 23 24 25 hdmapeq0 φ t Base U t 0 U HDMap K W t = 0 LCDual K W t = 0 U
60 59 necon3bid φ t Base U t 0 U HDMap K W t 0 LCDual K W t 0 U
61 58 60 mpbird φ t Base U t 0 U HDMap K W t 0 LCDual K W
62 22 27 16 17 50 52 54 57 26 61 lvecvscan2 φ t Base U t 0 U G X · ˙ Y LCDual K W HDMap K W t = G X Scalar LCDual K W G Y LCDual K W HDMap K W t G X · ˙ Y = G X Scalar LCDual K W G Y
63 49 62 mpbid φ t Base U t 0 U G X · ˙ Y = G X Scalar LCDual K W G Y
64 63 rexlimdv3a φ t Base U t 0 U G X · ˙ Y = G X Scalar LCDual K W G Y
65 12 64 mpd φ G X · ˙ Y = G X Scalar LCDual K W G Y
66 1 2 3 4 6 7 8 hgmapcl φ G X B
67 1 2 3 4 6 7 9 hgmapcl φ G Y B
68 1 2 3 4 5 13 16 28 7 66 67 lcdsmul φ G X Scalar LCDual K W G Y = G Y · ˙ G X
69 65 68 eqtrd φ G X · ˙ Y = G Y · ˙ G X