| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprnlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hgmaprnlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hgmaprnlem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hgmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | hgmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hgmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hgmaprnlem1.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hgmaprnlem1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hgmaprnlem1.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hgmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 14 |  | hgmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hgmaprnlem1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hgmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hgmaprnlem1.z | ⊢ ( 𝜑  →  𝑧  ∈  𝐴 ) | 
						
							| 18 |  | hgmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 | ⊢ ( 𝜑  →  𝑠  ∈  𝑉 ) | 
						
							| 20 |  | hgmaprnlem1.sz | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 21 |  | hgmaprnlem1.k2 | ⊢ ( 𝜑  →  𝑘  ∈  𝐵 ) | 
						
							| 22 |  | hgmaprnlem1.sk | ⊢ ( 𝜑  →  𝑠  =  ( 𝑘  ·  𝑡 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑆 ‘ ( 𝑘  ·  𝑡 ) ) ) | 
						
							| 24 | 18 | eldifad | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 25 | 1 2 3 6 4 5 8 12 14 15 16 24 21 | hgmapvs | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝑘  ·  𝑡 ) )  =  ( ( 𝐺 ‘ 𝑘 )  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 26 | 23 20 25 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑘 )  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 27 | 1 8 16 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 28 | 1 2 4 5 8 10 11 15 16 21 | hgmapdcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑘 )  ∈  𝐴 ) | 
						
							| 29 | 1 2 3 8 9 14 16 24 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 ) | 
						
							| 30 |  | eldifsni | ⊢ ( 𝑡  ∈  ( 𝑉  ∖  {  0  } )  →  𝑡  ≠   0  ) | 
						
							| 31 | 18 30 | syl | ⊢ ( 𝜑  →  𝑡  ≠   0  ) | 
						
							| 32 | 1 2 3 7 8 13 14 16 24 | hdmapeq0 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑡 )  =  𝑄  ↔  𝑡  =   0  ) ) | 
						
							| 33 | 32 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑡 )  ≠  𝑄  ↔  𝑡  ≠   0  ) ) | 
						
							| 34 | 31 33 | mpbird | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ≠  𝑄 ) | 
						
							| 35 | 9 12 10 11 13 27 17 28 29 34 | lvecvscan2 | ⊢ ( 𝜑  →  ( ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑘 )  ∙  ( 𝑆 ‘ 𝑡 ) )  ↔  𝑧  =  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 36 | 26 35 | mpbid | ⊢ ( 𝜑  →  𝑧  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 37 | 1 2 4 5 15 16 | hgmapfnN | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 38 |  | fnfvelrn | ⊢ ( ( 𝐺  Fn  𝐵  ∧  𝑘  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ran  𝐺 ) | 
						
							| 39 | 37 21 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑘 )  ∈  ran  𝐺 ) | 
						
							| 40 | 36 39 | eqeltrd | ⊢ ( 𝜑  →  𝑧  ∈  ran  𝐺 ) |