| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprnlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hgmaprnlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hgmaprnlem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hgmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | hgmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hgmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hgmaprnlem1.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hgmaprnlem1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hgmaprnlem1.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hgmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 14 |  | hgmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hgmaprnlem1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hgmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hgmaprnlem1.z | ⊢ ( 𝜑  →  𝑧  ∈  𝐴 ) | 
						
							| 18 |  | hgmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 | ⊢ ( 𝜑  →  𝑠  ∈  𝑉 ) | 
						
							| 20 |  | hgmaprnlem1.sz | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 21 |  | hgmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 22 |  | hgmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 23 |  | hgmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 24 | 1 8 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 25 | 18 | eldifad | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 26 | 1 2 3 8 9 14 16 25 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 ) | 
						
							| 27 | 10 11 9 12 23 | lspsnvsi | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑧  ∈  𝐴  ∧  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 )  →  ( 𝐿 ‘ { ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) } )  ⊆  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 28 | 24 17 26 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) } )  ⊆  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 29 | 1 2 3 22 8 23 21 14 16 19 | hdmap10 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑠 } ) )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑠 ) } ) ) | 
						
							| 30 | 20 | sneqd | ⊢ ( 𝜑  →  { ( 𝑆 ‘ 𝑠 ) }  =  { ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) } ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑠 ) } )  =  ( 𝐿 ‘ { ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) } ) ) | 
						
							| 32 | 29 31 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑠 } ) )  =  ( 𝐿 ‘ { ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) } ) ) | 
						
							| 33 | 1 2 3 22 8 23 21 14 16 25 | hdmap10 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 34 | 28 32 33 | 3sstr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑠 } ) )  ⊆  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 36 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 37 | 3 35 22 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑠  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 38 | 36 19 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 39 | 3 35 22 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑡  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑡 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 40 | 36 25 39 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑡 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 41 | 1 2 35 21 16 38 40 | mapdord | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑠 } ) )  ⊆  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  ↔  ( 𝑁 ‘ { 𝑠 } )  ⊆  ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 42 | 34 41 | mpbid | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑠 } )  ⊆  ( 𝑁 ‘ { 𝑡 } ) ) |